<h3>
Answer:</h3>
117.6 Joules
<h3>
Explanation:</h3>
<u>We are given;</u>
- Force of the dog is 24 N
- Distance upward is 4.9 m
We are required to calculate the work done
- Work done is the product of force and distance
- That is; Work done = Force × distance
- It is measured in Joules.
In this case;
Force applied is equivalent to the weight of the dog.
Work done = 24 N × 4.9 m
= 117.6 Joules
Hence, the work done in lifting the dog is 117.6 Joules
knives, axe ,blades and nails are examples of potential energy
or sharp objects
The weight is the force experienced, whereas the mass represents the actual quantity of matter inside a body..
weigh on the surface of the earth is equal to mg
mass is m
and at the centre weight is 0 due to 0 acceleration that's 0 g
but mass is always constant and remains m, no matter where you are
Answer:
the wagon should be used as frame of reference if an observer said the child was not moving.
Explanation:
The state of motion of a body depends upon the frame of reference. It is the set of co-ordinates according to which the motion is analyzed. If a child is riding in a wagon, then he will be considered in motion to a person standing outside the wagon. Hence, if we take a frame of reference outside the wagon then the child must be in motion with respect to the observer. On the other hand if the observer is inside the wagon, then the child must be in rest with respect to the observer. Hence, if we take the wagon to be the frame of reference, then the child will be at rest with respect to the observer.
<u>Therefore, the wagon should be used as frame of reference if an observer said the child was not moving.</u>
Answer: See below
Explanation:
The Earth attracts the falling object with the same intensity of gravity as the object attracts the Earth, according to Newton's law of gravitation. The displacement of the two bodies, however, is inversely proportional to their respective masses.
Example: The Earth attracts a ball that falls 3 metres from the ground, even though the ball's mass is insignificant in comparison to the Earth's. Similarly, the ball draws the Earth with the same power, but the Earth's mass is enormously more than the ball's. As a result, the Earth collides with a billionth of a millimetre ball (or even less). Restart the Earth's descent on the ball you'll never see again.
|-----------|
| ANSWERED |
| BY |
| SHORTHAX |
|-----------|
(\__/) ||
(•ㅅ•) ||
/ づ