Answer:
Keeping the speed fixed and decreasing the radius by a factor of 4
Explanation:
A ball is whirled on the end of a string in a horizontal circle of radius R at constant speed v. The centripetal acceleration is given by :

We need to find how the "centripetal acceleration of the ball can be increased by a factor of 4"
It can be done by keeping the speed fixed and decreasing the radius by a factor of 4 such that,
R' = R/4
New centripetal acceleration will be,




So, the centripetal acceleration of the ball can be increased by a factor of 4.
E = I R
That means
Voltage = (current) x (resistance)
= (2.5 A) x (2.4 ohms)
= 6 volts .
Image formed by a plane mirror is always virtual which means that the light rays do not actually come from the image but upright and these of the same shape and size are the object it is<span> reflecting.</span>
Answer:
a sleep doesnt get to depict whether you get a good grade or not its what you know.
Answer:
26.2 m/s
Explanation:
We can find the speed of the cannonball just by analyzing its vertical motion. In fact, the initial vertical velocity is
(1)
where u is the initial speed and
is the angle of projection.
We can therefore use the following suvat equation for the vertical motion of the ball:

where
is the vertical velocity at time t, and
is the acceleration of gravity. The time of flight is 3.78 s, so we know that the ball reaches its maximum height at half this time:

And at the maximum height, the vertical velocity is zero:

Substituting these values, we find the initial vertical velocity:

And using eq.(1) we now find the initial speed:
