<span>In the labeled portion of the curve ,you use the heat of vaporization to calculate the heat absorbed in the 4th portion. It is indicated in the picture that it is the region where vaporization occurs, that is why you need to consider this portion to calculate.</span>
Answer:
14.85 m/s
Explanation:
From the question given above, the following data were obtained:
Height (h) of tower = 45 m
Horizontal distance (s) moved by the balloon = 45 m
Horizontal velocity (u) =?
Next, we shall determine the time taken for the balloon to hit the shoe of the passerby. This is illustrated below:
Height (h) of tower = 45 m
Acceleration due to gravity (g) = 9.8 m/s²
Time (t) =?
h = ½gt²
45 = ½ × 9.8 × t²
45 = 4.8 × t²
Divide both side by 4.9
t² = 45/4.9
Take the square root of both side
t = √(45/4.9)
t = 3.03 s
Finally, we shall determine the magnitude of the horizontal velocity of the balloon as shown below:
Horizontal distance (s) moved by the balloon = 45 m
Time (t) = 3.03 s
Horizontal velocity (u) =?
s = ut
45 = u × 3.03
Divide both side by 3.03
u = 45/3.03
u = 14.85 m/s
Thus, the magnitude of the horizontal velocity of the balloon was 14.85 m/s
Why the answer to your question is Contour farming I hope this helps add me as a friend and I can help more
Answer:
a) 14.2sec
b) 1394m away if horizontal speed never changes
c) 9.8m/s
Explanation:
Answer:
When in free fall, the only force acting upon your body is the force of gravity - a non-contact force. Since the force of gravity cannot be felt without any other opposing forces, you would have no sensation of it. You would feel weightless when in a state of free fall.