SBb type spiral. Its a type B because its not too tightly wound but its still too tight to be a type C
Answer:
b. $96,914
Explanation:
360-day borrowing rate = 5%
spot rate = 0.48
360-day deposit rate = 6%
Borrow at the rate of 5% to get
SF200,000/1.05 = $190,476.19
Convert at the spot rate of $0.48 to get
190,476.19*0.48 = $91,428.57
Invest at the interest rate of 6% to get
91,428.57/1.06 = 96,914.28
Therefore, Parker Company will receive $96,914 in 360 days.
Answer:
Sound wave is a longitudinal wave that propagates in a medium
Explanation:
<em>Part A:</em> (C) Sound wave is propagation of pressure fluctuations in a medium.
<em>Part B: </em>(C) Pressure fluctuations travel along the direction of propagation of the sound wave.
<em>Part C: </em>(A) Yes air play a role in the propagation of the human voice from one end of the lecture hall to the other.
Answer:
Alloy, metallic substance composed of two or more elements, as either a compound or a solution. The components of alloys are ordinarily themselves metals, though carbon, a nonmetal, is an essential constituent of steel.
Explanation:
Alloys are usually produced by melting the mixture of ingredients. The value of alloys was discovered in very ancient times; brass (copper and zinc) and bronze (copper and tin) were especially important. Today, the most important are the alloy steels, broadly defined as steels containing significant amounts of elements other than iron and carbon. The principal alloying elements for steel are chromium, nickel, manganese, molybdenum, silicon, tungsten, vanadium, and boron have a wide range of special properties, such as hardness, toughness, corrosion resistance, magnetizability, and ductility. Nonferrous alloys, mainly copper–nickel, bronze, and aluminum alloys, are much used in coinage. The distinction between an alloying metal and an impurity is sometimes subtle; in aluminum, for example, silicon may be considered an impurity or a valuable component, depending on the application, because silicon adds strength though it reduces corrosion resistance.
Answer:
- Water gained: 10
- Iron lost: -10
Explanation:
Given: Hot iron bar is placed 100ml 22C water, the water temperature rises to 32C
To find: How much heat the water gain, how much heat did the iron bar lost
Formula:Q = change T x C x M
Solve:
<u>How much heat water gained</u>
Initial heat = 22, then rose to 32. To find how much heat the water gained, simply subtract the current heat by the initial heat.
32 - 22 = 10
The water gained 10 amounts of heat.
<u>How much heat Iron lost</u>
Current heat = 32, then dropped to 22. To find how much heat the Iron lost, simply subtract the initial heat by the current heat.
22 - 32 = -10
The Iron lost -10 amounts of water.