Answer : The volume of
produced at standard conditions of temperature and pressure is 0.2422 L
Explanation :
Combined gas law is the combination of Boyle's law, Charles's law and Gay-Lussac's law.
The combined gas equation is,

where,
= initial pressure of
gas = (740-22.4) torr = 717.6 torr
= final pressure of
gas at STP= 760 torr
= initial volume of
gas = 280 mL
= final volume of
gas at STP = ?
= initial temperature of
gas = 
= final temperature of
gas = 
Now put all the given values in the above equation, we get:


Therefore, the volume of
produced at standard conditions of temperature and pressure is 0.2422 L
<span> Ksp = [Ag+]^2[CO32-]that should be it </span>
Hello. This question is incomplete. The full question is:
"Consider the following reaction. 2NO(g) + 2H2(g) → N2(g) + 2H2O(g)
A proposed reaction mechanism is: NO(g) + NO(g) N2O2(g) fast N2O2(g) + H2(g) → N2O(g) + H2O(g) slow N2O(g) + H2(g) → N2(g) + H2O(g) fast
What is the rate expression? A. rate = k[H2] [NO]2 B. rate = k[N2O2] [H2] C. rate = k[NO]2 [H2]2 D. rate = k[NO]2 [N2O2]2 [H2]"
Answer:
A. rate = k[H2] [NO]2
Explanation:
A reaction mechanism is a term used to describe a set of phases that make up a chemical reaction. In these phases a detailed sequence of each step is shown, composed of several complementary reactions, which occur during a chemical reaction.
These mechanisms are directly related to chemical kinetics and allow changes in reaction rates to be observed in advance.
Reaction rate, on the other hand, refers to the speed at which chemical reactions occur.
Based on this, we can observe through the reaction mechanism shown in the question above, that the action "k [H2] [NO] 2" would have no changes in the reaction rate.
Answer:
The primary producer would be at the bottom of the food chain.
Explanation: