1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
andrew-mc [135]
2 years ago
10

What evidence supports conservation of matter?

Chemistry
1 answer:
Zinaida [17]2 years ago
7 0

Answer:

i dont knoq

Explanation:

sorry that i couldnt help you

You might be interested in
Write a net ionic equation to show that acetylsalicylic acid (aspirin), hc9h7o4, behaves as a brønsted-lowry acid in water.
Thepotemich [5.8K]
By definition, Bronsted-Lowry acid is a proton donor in the acid-base neutralization reaction. When a weak acid like acetylsalicylic acid is reacted with water, the water here acts as the Bronsted-Lowry base. This is possible because water has properties of amphoterism - can act as an acid or base. In this case, acetylsalicylic acid would have to donate its H+ atom to water, so that it would yield a hydronium ion, H₃O⁺. The complete net ionic reaction is shown in the picture.

So, in the reaction, the products yield are the acetylsalicylate ion and the hydronium ion.

3 0
2 years ago
the atomic mass of N is 14.01 g/mol and the atomic mass of H is 1.008 g/mol. what is the molecular mass of NH3
nikdorinn [45]
Molecular mass= (14.01∗1)+(1.008∗3)
                         14.01+3.024=17.03g/mol
7 0
3 years ago
A 48.0g sample of quartz, which has a specific heat capacity of 0.730·J·g−1°C−1, is dropped into an insulated container containi
Butoxors [25]

Answer:

The equilibrium temperature of the water is 26.7 °C

Explanation:

<u>Step 1:</u> Data given

Mass of the sample quartz = 48.0 grams

Specific heat capacity of the sample = 0.730 J/g°C

Initial temperature of the sample = 88.6°C

Mass of the water = 300.0 grams

Initial temperature = 25.0°C

Specific heat capacity of water = 4.184 J/g°C

<u>Step 2:</u> Calculate final temperature

Qlost = -Qgained

Qquartz = - Qwater

Q =m*c*ΔT

Q = m(quartz)*c(quartz)*ΔT(quartz) = -m(water) * c(water) * ΔT(water)

⇒ mass of the quartz = 48.0 grams

⇒ c(quartz) = the specific heat capacity of quartz = 0.730 J/g°C

⇒ ΔT(quartz) = The change of temperature of the sample = T2 -88.6 °C

⇒ mass of water = 300.0 grams

⇒c(water) = the specific heat capacity of water = 4.184 J/g°C

⇒ ΔT= (water) = the change in temperature of water = T2 - 25.0°C

48.0 * 0.730 * (T2-88.6) -300.0 * 4.184 *(T2 - 25.0)

35.04(T2-88.6) = -1255.2 (T2-25)

35.04T2 -3104.544 = -1255.2T2 + 31380

1290.24T2 = 34484.544

T2 = 26.7 °C

The equilibrium temperature of the water is 26.7 °C

8 0
2 years ago
A weighed piece of magnesium ribbon is added to a dried crucible, which is reweighed and heated in air to form the compound MgO.
olga nikolaevna [1]

Answer:

One of the errors for low percentage of magnesium could be because not all the magnesium may have reacted.

Explanation:

During the heating process, if the magnesium have not reacted completely, it can lead to low percentage of magnesium in the oxide formed. The product may still look a bit greyish rather than whitish after the heating process.

4 0
3 years ago
When nahco3 completely decomposes, it can follow this balanced chemical equation: 2nahco3 → na2co3 h2co3 determine the theoretic
BigorU [14]

Theoretical yield = 2.397

The product could be sodium carbonate

percent yield = 98.456%

When nahco3 completely decomposes, it can follow this balanced chemical equation:

2nahco3 → na2co3 h2co3

If the mass of the NaHCO3 sample is 3.80 g, we must use stoichiometry to calculate the theoretical yields of each of the products.

mass of NaHCO₃ = 3.80 g

molar mass of NaHCO₃ = 84 g/mol

so the no of moles of NaHCO₃ = 3.80/84 =  0.0452 mol

You see, one mole of sodium carbonate and one mole of hydrogen carbonate are produced from two moles of sodium bicarbonate.

so, the no of moles of sodium carbonate = 0.0452/2 = 0.0226 mol

∴ mass of sodium carbonate ( Na₂CO₃) = no of moles of Na₂CO₃ × molar mass of Na₂CO₃

=  0.0226 × 106 ≈ 2.397 g

no of moles of hydrogen carbonate = 0.0452/2 = 0.0226 mol

mass of the hydrogen carbonate ( H₂CO₃) = no of moles of H₂CO₃ × molar mass of H₂CO₃

= 0.0226 × 62 g = 1.401 g

mass of one of the products was measured to be 2.36 g , from above data, we can say it must be sodium carbonate because value is the nearest of 2.397 g.

percentage yield = experimental yield/theoretical yield × 100

here experimental yield of Na₂CO₃ = 2.36 g

and theoretical yield of Na₂CO₃ = 2.397 g

∴ % yield = 2.36/2.397 × 100 ≈ 98.456%

Therefore the percentage yield of the product is 98.456%

To learn more about percentage yield visit:

brainly.com/question/22257659

#SPJ4

6 0
2 years ago
Other questions:
  • a mixture of oxygen, hydrogen, and nitrogen exerts a total pressure of 378 kPa. if the partial pressures of oxygen and hydrogen
    15·1 answer
  • In a ring structure, an unlabeled atom at the angle where two lines join is assumed to be a carbon atom. 2. unlabeled atoms join
    12·1 answer
  • What is synthesis reation?​
    6·1 answer
  • When would you be most likely to see a rainbow
    5·2 answers
  • Can Individual atoms be moved and rearranged ?
    14·1 answer
  • What is an atom? I'll give brainliest.
    5·1 answer
  • What are the four protein structures?
    8·1 answer
  • Imm so bored talk to meeeee tehee freeee pointsss
    15·2 answers
  • Is this equation right? ​
    11·2 answers
  • Which of the following metals will liberate hydrogen from dilute HCL? A. Ag B.Au C.Hg D.Sn​
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!