1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
svp [43]
2 years ago
12

What is the positive root of the equation x ^2 + 5x = 150?

Mathematics
2 answers:
devlian [24]2 years ago
6 0
the awnser I came out with is x=10,-15
lawyer [7]2 years ago
3 0

Answer:

Prettymoney learn to spell bro

Step-by-step explanation:

You might be interested in
How many bases does a rectangular prism have?<br> one<br> two<br> three<br> four
kolezko [41]

Answer:

B. two

explanation:

i took the test

hope this helps. have a great day!!

7 0
2 years ago
Read 2 more answers
Use the equation and type the ordered-pairs. y = log 3 x {(1/3, a0), (1, a1), (3, a2), (9, a3), (27, a4), (81, a5)
vagabundo [1.1K]

Answer:

Considering the given equation y = log_{3}x\\

And the ordered pairs in the format (x, y)

I don't know if it is log of base 3 or 10, but I will assume it is 3.

For (\frac{1}{3}, a_{0} )

x=\frac{1}{3}

y=a_{0}

y = log_{3}x\\y = log_{3}(\frac{1}{3} )\\y=-\log _3\left(3\right)\\y=-1

So the ordered pair will be (\frac{1}{3}, -1 )

For (1, a_{1} )

x=1

y=a_{1}

y = log_{3}x\\y = log_{3}1\\y = log_{3}(1)\\Note: \log _a(1)=0\\y = 0

So the ordered pair will be (1, 0 )

For (3, a_{2} )

x=3

y=a_{2}

y = log_{3}x\\y = log_{3}3\\y = 1

So the ordered pair will be (3, 1 )

For (9, a_{3} )

x=9

y=a_{3}

y = log_{3}x\\y = log_{3}9\\y=2\log _3\left(3\right)\\y=2

So the ordered pair will be (9, 2 )

For (27, a_{4} )

x=27

y=a_{4}

y = log_{3}x\\y = log_{3}27\\y=3\log _3\left(3\right)\\y=3

So the ordered pair will be (27, 3 )

For (81, a_{5} )

x=81

y=a_{5}

y = log_{3}x\\y = log_{3}81\\y=4\log _3\left(3\right)\\y=4

So the ordered pair will be (81, 4 )

4 0
3 years ago
For the set ​= ​{​2,4,6}, determine ​n(​A)
Katyanochek1 [597]

Answer:

n(A)= 10

Step-by-step explanation:

Hope it is ..mark me as brilliant

3 0
2 years ago
|. Identify the following Pōints of each values.Write your ans
Dmitry_Shevchenko [17]
<h2>✒️VALUE</h2>

\\ \quad  \begin{array}{c} \qquad \bold{Distance \: \green{ Formula:}}\qquad\\ \\ \boldsymbol{ \tt d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}} \end{array}\\  \begin{array}{l} \\ 1.)\: \bold{Given:}\: \begin{cases}\tt D(- 5,6), E(2.-1),\textsf{ and }F(x,0) \\ \tt DF = EF \end{cases} \\ \\  \qquad\bold{Required:}\:\textsf{ value of }x \\ \\ \qquad \textsf{Solving for }x, \\ \\  \tt  \qquad DF = EF \\ \\  \implies\small \tt{\sqrt{(x -(- 5))^2 + (0 - 6)^2} = \sqrt{(x - 2)^2 + (0 - (-1))^2}} \\ \\   \implies\tt\sqrt{(x + 5)^2 + 36 } = \sqrt{(x - 2)^2 + 1 } \\ \\ \textsf{Squaring both sides yields} \\ \\  \implies\tt (x + 5)^2 + 36 = (x - 2)^2 + 1 \\ \\  \implies\tt x^2 + 10x + 25 + 36 = x^2 - 4x + 4 + 1 \\ \\ \implies \tt x^2 + 10x + 61 = x^2 - 4x + 5 \\ \\   \implies\tt10x + 4x = 5 - 61 \\ \\   \implies\tt14x = -56 \\ \\  \implies \red{\boxed{\tt x = -4}}\end{array}  \\  \\  \\  \\\begin{array}{l} \\ 2.)\: \bold{Given:}\: \begin{cases}\tt P(6,-1), Q(-4,-3),\textsf{ and }R(0,y) \\ \tt PR = QR \end{cases} \\ \\ \bold{Required:}\:\textsf{ value of }y \\ \\  \qquad\textsf{Solving for }y, \\ \\  \qquad\tt PR = QR \\ \\  \implies \tt\small{\sqrt{(0 - 6)^2 + (y - (-1))^2} = \sqrt{(0 - (-4))^2 + (y - (-3))^2}} \\ \\   \implies\tt\sqrt{36 + (y + 1)^2} = \sqrt{16 + (y + 3)^2 } \\ \\ \textsf{Squaring both sides yields} \\ \\  \implies \tt \: 36 + (y + 1)^2 = 16 + (y + 3)^2 \\ \\  \implies\tt 36 + y^2 + 2y + 1 = 16 + y^2 + 6y + 9 \\ \\  \implies \tt \: y^2 + 2y + 37 = y^2 + 6y + 25 \\ \\  \implies \tt \: 2y - 6y = 25 - 37 \\ \\ \implies \tt -4y = -12 \\ \\   \implies\red{\boxed{ \tt y = 3}} \end{array}  \\  \\  \\ \begin{array}{l} \\ 3.)\: \bold{Given:}\: \begin{cases}\: A(4,5), B(-3,2),\textsf{ and }C(x,0) \\ \: AC = BC \end{cases} \\ \\ \bold{Required:}\:\textsf{ value of }x \\ \\  \qquad\textsf{Solving for }x, \\ \\   \qquad\tt AC = BC \\ \\ \implies\tt\small{\sqrt{(x - 4)^2 + (0 - 5)^2} = \sqrt{(x - (-3))^2 + (0 - 2)^2}} \\ \\ \implies\tt\sqrt{(x - 4)^2 + 25} = \sqrt{(x + 3)^2 + 4} \\ \\ \textsf{Squaring both sides yields} \\ \\ \implies\tt\:(x - 4)^2 + 25 = (x + 3)^2 + 4 \\ \\ \implies\tt\:x^2 - 8x + 16 + 25 = x^2 + 6x + 9 + 4 \\ \\ \implies\tt\:x^2 - 8x + 41 = x^2 + 6x + 13 \\ \\ \implies\tt-8x - 6x = 13 - 41 \\ \\\implies\tt -14x = -28 \\ \\ \implies\red{\boxed{\tt\:x = 2}} \end{array}

#CarryOnLearning

#BrainlyMathKnower

#5-MinutesAnswer

7 0
2 years ago
What equation could you use to solve the problem below? The math clubs car can travel 9 m in a second. The race track for the so
WARRIOR [948]

Answer:

D

Step-by-step explanation:

Because if you divide it becomes 3

then to check if its right you just need to multiply 3 and 9 and it becomes 27

5 0
2 years ago
Other questions:
  • Question 16a. Please help. ASAP
    11·2 answers
  • What is the area of this shape?
    10·1 answer
  • Find u. write your answer in simplest radical form
    6·1 answer
  • What is the least common denominator for 5/6 and 3/8
    9·1 answer
  • A total of 649 tickets were sold for the school play. They were either adult tickets or student tickets. There were 51 fewer stu
    14·2 answers
  • The lateral area of a right prism having a perimeter of 25 inches and a height of 5 inches is?
    10·1 answer
  • What is the answer to the problem? 7 1/2 ÷ 3/4 I need this fast please help!! :)
    7·2 answers
  • 15. There are 240 stamps in Jerry
    13·1 answer
  • Can someone help on this using the pythagorean theorem
    8·2 answers
  • If f(x) = 1/9x-2, what is f-1 (x)?
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!