Impulse describes the change of momentum. Since we don't know the momentum of the soccer ball before the hit, this question is hard to answer. If you assume the momentum of the ball before the hit was p = 0, then the change in momentum is just Δp = Impulse = mv.
<span>Ocean currents act much like a conveyer belt,
transporting warm water and precipitation from the equator toward the
poles and cold water from the poles back to the tropics. Thus, currents
regulate global climate, helping to counteract the uneven distribution of solar radiation reaching Earth's surface.</span>
The speed
of the elevator at the beginning of the 8 m descent is nearly 4 m/s. Hence, option A is the correct answer.
We are given that-
the mass of the elevator (m) = 1000 kg ;
the distance the elevator decelerated to be y = 8m ;
the tension is T = 11000 N;
let us determine the acceleration 'a' by using Newton's second law of motion.
∑Fy = ma
W - T = ma
(1000kg x 9.8 m/s² ) - 11000N = 1000 kg x a
9800 - 11000 = 1000
a = - 1.2 m/s²
Using the equation of kinematics to determine the initial velocity.
² =
² + 2ay
= √ ( 2 x 1.2m/s² x 8 m )
= √19.2 m²/s²
= 4.38 m/s ≈ 4 m/s
Hence, the initial velocity of the elevator is 4m/s.
Read more about the Equation of kinematics:
brainly.com/question/12351668
#SPJ4
Mass, m=22 kg
It is given that Force, F = 88N
Acceleration, a=4 m/s 2