Answer: 5,640 s (94 minutes)
Explanation:
the tangential speed of the HST is given by
(1)
where
is the length of the orbit
r is the radius of the orbit
T is the orbital period
In our problem, we know the tangential speed:
. The radius of the orbit is the sum of the Earth's radius and the distance of the HST above Earth's surface:

So, we can re-arrange equation (1) to find the orbital period:

Dividing by 60, we get that this time corresponds to 94 minutes.
Answer:
The force of the nail pushing in the opposite direction
Potential difference is the work done In moving a charge from one point to another in a conductor
M° = 2.5 kg/sec
For saturated steam tables
at p₁ = 125Kpa
hg = h₁ = 2685.2 KJ/kg
SQ = s₁ = 7.2847 KJ/kg-k
for isotopic compression
S₁ = S₂ = 7.2847 KJ/kg-k
at 700Kpa steam with S = 7.2847
h₂ 3051.3 KJ/kg
Compressor efficiency
h = 0.78
0.78 = h₂ - h₁/h₂-h₁
0.78 = h₂-h₁ → 0.78 = 3051.3 - 2685.2/h₂ - 2685.2
h₂ = 3154.6KJ/kg
at 700Kpa with 3154.6 KJ/kg
enthalpy gives
entropy S₂ = 7.4586 KJ/kg-k
Work = m(h₂ - h₁) = 2.5(3154.6 - 2685.2
W = 1173.5KW