Answer:
the acceleration is reduced by gravity
a = (15 / .35) - [9.8 * sin(65º)]
Explanation:
break the launch vector into two components, vertical and horizontal
Force Net Vertical=-9.8*.350+15cos65 N
force net horizonal=15sin65
initial acceleration= force/mass= (-9.8+15/.350*cos65)j+(15/.350*sin65)i
using i,j vectors..
Explanation:
Given that,
Charge 1, 
Charge 2, 
Distance between charges, r = 0.0209 m
1. The electric force is given by :


F = -492.95 N
2. Distance between two identical charges, 
Electric force is given by :




Hence, this is the required solution.
Acceleration = (final velocity^2 - initial velocity^2) / 2 * distance
Acceleration = (19.1^2 - 9.2^2) / 2 * 32
Acceleration = (364.81 - 84.64) / 64
Acceleration = 280.17 / 64
Acceleration = 4.3777m/s^2
:)
Answer:
The correct answer is option a.
Explanation:
Conservation of momentum :

Where :
= masses of object collided
= initial velocity before collision
= final velocity after collision
We have :
Two equal-mass carts roll towards each other.

Initial velocity of 
Initial velocity of
(opposite direction)
Final velocity of
(same direction )
Final velocity of
(same direction)


v = 0.5 m/s
rg135
The speed of the carts after their collision is 0.5 m/s.
Without air resistance, both balls reach the ground at the same instant.
Neither horizontal motion nor weight affects vertical motion.