The car bounces off and moves in the opposite direction
The velocity with which the jumper leaves the floor is 5.1 m/s.
<h3>
What is the initial velocity of the jumper?</h3>
The initial velocity of the jumper or the velocity with which the jumper leaves the floor is calculated by applying the principle of conservation of energy as shown below.
Kinetic energy of the jumper at the floor = Potential energy of the jumper at the maximum height
¹/₂mv² = mgh
v² = 2gh
v = √2gh
where;
- v is the initial velocity of the jumper on the floor
- h is the maximum height reached by the jumper
- g is acceleration due to gravity
v = √(2 x 9.8 x 1.3)
v = 5.1 m/s
Learn more about initial velocity here: brainly.com/question/19365526
#SPJ1
Answer:
crescent Moon crescent Moon
Stopped at the end of the tracks by a spg-damper system, as shown in fig. 1
Answer:
Motion of a racing car on a circular track
Explanation:
Uniform circular motion means the motion of the object is in a circle with a CONSTANT SPEED.
The racing car will accelerate during its motion. Hence, it is not a uniform circular motion.