Recall this gas law:
= 
P₁ and P₂ are the initial and final pressures.
V₁ and V₂ are the initial and final volumes.
T₁ and T₂ are the initial and final temperatures.
Given values:
P₁ = 475kPa
V₁ = 4m³, V₂ = 6.5m³
T₁ = 290K, T₂ = 277K
Substitute the terms in the equation with the given values and solve for Pf:

<h3>P₂ = 279.2kPa</h3>
Answer:
Final angular velocity is 35rpm
Explanation:
Angular velocity is given by the equation:
I1w1i + I2w2i = I1w1f -I2w2f
But the two disks are identical, so Ii =I2
wf can be calculated using
wf = w1i - w2i/2
Given: w1i =50rpm w2i= 30rpm
wf= (50 + 20) / 2
wf= 70/2 = 35rpm
Answer:
20.7 s
Explanation:
The equation to calculate the velocity for a uniform acceleration a, time t and initial velocity v₀:
v = a*t + v₀
Solve for t:
t = (v - v₀)/a
Ideal Gas Law is, pV = NkbT
<span>Therefore, p/t = Nkb/V which is
equal to the constant</span>
We need to convert the given temperature to Kelvin. We need to add 273 to
have the Kelvin of the temperature from Celsius.
T1= 20 + 273 = 293 K
T2= 120 + 273 = 393 K
With this we have the pressure ration of 393/293.
So,F120 = 1.34 APa
<span> </span>