Explanation:
Sulfur has 6 valence electron
Valence electron shows group( in column)
Answer: 1090°C
Explanation: According to combined gas laws
(P1 × V1) ÷ T1 = (P2 × V2) ÷ T2
where P1 = initial pressure of gas = 80.0 kPa
V1 = initial volume of gas = 10.0 L
T1 = initial temperature of gas = 240 °C = (240 + 273) K = 513 K
P2 = final pressure of gas = 107 kPa
V2 = final volume of gas = 20.0 L
T2 = final temperature of gas
Substituting the values,
(80.0 kPa × 10.0 L) ÷ (513 K) = (107 kPa × 20.0 L) ÷ T2
T2 = 513 K × (107 kPa ÷80.0 kPa) × (20.0 L ÷ 10.0 L)
T2 = 513 K × (1.3375) × (2)
T2 = 1372.275 K
T2 = (1372.275 - 273) °C
T2 = 1099 °C
Answer:
The first question is option 2
and the second question in option 1
Explanation:
Answer:
The molarity of this final solution is 0.167 M
Explanation:
Step 1: Data given
Volume of a 0.100 M HNO3 solution = 50.0 mL
Volume of a 0.200 M HNO3 = 100.0 mL
Step 2: Calculate moles
The final molarity must lie between 0.1M and 0.2M
Moles = molarity * volume
Moles HNO3 in 50mL of a 0.100M solution = 0.05 L *0.100 M = 0.005 mol
Moles HNO3 in 100mL of a 0.200M solution = 0.100 L*0.200 = 0.020mol
total moles = 0.005+0.020 = 0.025 moles in 150mL solution = 0.150L
Step 3: Calculate molarity of final solution
Molarity = mol / volume
Molarity 0.025 moles /0.150 L
Molarity = 0.167M
The molarity of this final solution is 0.167 M