<span>At 100 feet, the diver is under about 4 atmospheres pressure. If she is free diving, her lungs will be compressed to about 1/4 their size on the surface (with some movement of the major abdominal organs). If she is scuba diving, the air which she is breathing is also at 4 atmospheres and there is no problem. (The non-gas spaces in the body are not-compressible and are unaffected.) The only problems she has to concern herself with are the beginnings to nitrogen narcosis and the nitrogen which is dissolving (Henry's law) into her body tissues. On the way up, she also has to remember that the air in her lungs will expand by a factor of 4 and she better exhale! Hope this helps you</span>
Answer: Another useful feature of the periodic table is that most tables provide all the information you need to balance chemical reactions at a glance. The table tells each element's atomic number and usually its atomic weight. The typical charge of an element is indicated by its group.
Explanation:
Answer:
Yes, the investigations will reach similar conclusions about the reactivity of H2 and Cl2
Explanation:
1. The law of multiple proportions says that when elements form compounds, the proportions of the elements in those chemical compounds can be expressed in small whole number ratios. This means that regardless of whether 1000 times more of the products are used, the reactivity of the products is established by the chemical reaction
2. The law of multiple proportions is an extension of the law of definite composition, which states that compounds will consist of defined ratios of elements.
3. A reaction with more reactants will need more care because more products are produced, which can be toxic
4. H2 and Cl2 reactivity does not depend on the quantities but the chemical properties of each compound
Theoretical yield is the quantity of a product obtained from the complete conversion of the limiting reactant in a chemical reaction. It is the amount of product resulting from a perfect chemical reaction and thus not the same as the amount you'll actually get from a reaction.
Answer:
10 L of CO₂.
Explanation:
The balanced equation for the reaction is given below:
2CO + O₂ —> 2CO₂
From the balanced equation above,
2 L of CO reacted to produce 2 L of CO₂.
Finally, we shall determine the volume of CO₂ produced by the reaction of 10 L CO. This can be obtained as follow:
From the balanced equation above,
2 L of CO reacted to produce 2 L of CO₂.
Therefore, 10 L of CO will also react to produce 10 L of CO₂.
Thus, 10 L of CO₂ were obtained from the reaction.