Explanation:Saturn is the second largest planet of the solar system in mass and size and the sixth nearest planet in distance to the Sun.
In the night sky Saturn is easily visible to the unaided eye as a non twinkling point of light.
Answer:
Series equivalent resistance:
Parallel equivalent resistance: 
Explanation:
The equivalent resistance in series circuit is calculated as



The equivalent resistance in parallel circuit is calculated as

Which can be simplified to



The parallel circuit has the higher equivalent resistance as compared to series circuit.
<span>The energy removed from a 450 g block of ice can only be done with a few options: a colder freezing facility, liquid nitrogen, or stopping the energy at all and adding dry ice for a brief period. The 450 g block should loose heat energy faster in a thermostat set at -20 degrees just to maintain the ice formation.</span>
Answer:
Explanation:
Remark
This is a momentum question. Both cars are sitting still (v1 and v2 are both 0) to start with). When the spring is sprung), they both move but in opposite directions.
Let us say that v4 is minus.
Equation
0 = m3*v3 - m4* v4
Givens
m3 = 1750 kg
m4 = 1000 kg
v3 = 4 m/s
Solution
m3*4m/s - m4*x = 0
1750 * 4 - 1000*x = 0
1750 * 4 = 1000x
7000 = 1000 x
7000/1000 = x
x = 7 m/s
Answer:
a) Fi = 85.76 N
b) Fi = 87.8 N
Explanation:
Given:-
- Density of hydraulic oil, ρ = 804 kg/m^3
- The radius of input piston, ri = 0.00861 m
- The radius of output piston, ro = 0.141 m
Find:-
What input force F is needed to support the 23000-N combined weight of a car and the output plunger, when
(a) the bottom surfaces of the piston and plunger are at the same level
(b) the bottom surface of the output plunger is 1.10 m above that of the input plunger?
Solution:-
For part a.
- We see that both plungers are equal levels or there is no pressure due to elevation head. So we are only dealing with static pressure exerted by the hydraulic oil on both plungers to be equal. This part is an application of Pascal's Law:
Pi = Po
Fi / Ai = Fo / Ao
Fi = Ai / Ao * Fo
Fi = (ri/ro)^2 * Fo
Fi = ( 0.00861 / 0.141 )^2 * 23000
Fi = 85.76 N
For part b.
- We see that both plungers are at different levels so there is pressure due to elevation head. So we are only dealing with static pressure exerted by the hydraulic oil on both plungers plus the differential in heads. This part is an application of Bernoulli's Equation:
Pi = Po + ρ*g*h
Where, h = Elevation head = 1.10m
Fi = (ri/ro)^2 * Fo + ρ*g*h*π*ri^2
Fi = 85.76 + (804*9.81*1.1*3.142*0.00861^2)
Fi = 87.8 N