Answer:
The tabletop is smooth so my finger is down it fast and easy. The fabric however slowed my finger down considerably, and it was harder for me to move my finger across it.
Explanation:
Hope this helps.
Answer:

Explanation:
given,
Wave vibrates = 37.6
time = 27.9 s
maximum distance travel = 450 cm
time = 11.3 s
wavelength = ?
frequency of wave

f = 1.35 Hz
Speed of wave

v = 39.82 cm/s
wavelength of wave
v = fλ



Hence, wavelength of the wave is equal to 25.79 cm.
Answer:
Final velocity = 7.677 m/s
KE before crash = 202300 J
KE after crash = 182,702.62 J
Explanation:
We are given;
m1 = 1400 kg
m2 = 4700 kg
u1 = 17 m/s
u2 = 0 m/s
Using formula for inelastic collision, we have;
m1•u1 + m2•u2 = (m1 + m2)v
Where v is final velocity after collision.
Plugging in the relevant values;
(1400 × 17) + (4700 × 0) = (1400 + 1700)v
23800 = 3100v
v = 23800/3100
v = 7.677 m/s
Kinetic energy before crash = ½ × 1400 × 17² = 202300 J
Kinetic energy after crash = ½(1400 + 1700) × 7.677² = 182,702.62 J
Answer:
meter per second
Explanation:
It could be any other unit such as yard or feet, put it will be whatever measure per second or whatever time.
Examples
feet per second
miles per hour
Answer:
a) v = √(v₀² + 2g h), b) Δt = 2 v₀ / g
Explanation:
For this exercise we will use the mathematical expressions, where the directional towards at is considered positive.
The velocity of each ball is
ball 1. thrown upwards vo is positive
v² = v₀² - 2 g (y-y₀)
in this case the height y is zero and the height i = h
v = √(v₀² + 2g h)
ball 2 thrown down, in this case vo is negative
v = √(v₀² + 2g h)
The times to get to the ground
ball 1
v = v₀ - g t₁
t₁ =
ball 2
v = -v₀ - g t₂
t₂ = - \frac{v_{o} + v }{ g}
From the previous part, we saw that the speeds of the two balls are the same when reaching the ground, so the time difference is
Δt = t₂ -t₁
Δt =
Δt = 2 v₀ / g