I don’t know how to speak the laungue or know this language
Answer:
All 3 principal stress
1. 56.301mpa
2. 28.07mpa
3. 0mpa
Maximum shear stress = 14.116mpa
Explanation:
di = 75 = 0.075
wall thickness = 0.1 = 0.0001
internal pressure pi = 150 kpa = 150 x 10³
torque t = 100 Nm
finding all values
∂1 = 150x10³x0.075/2x0,0001
= 0.5625 = 56.25mpa
∂2 = 150x10³x75/4x0.1
= 28.12mpa
T = 16x100/(πx75x10³)²
∂1,2 = 1/2[(56.25+28.12) ± √(56.25-28.12)² + 4(1.207)²]
= 1/2[84.37±√791.2969+5.827396]
= 1/2[84.37±28.33]
∂1 = 1/2[84.37+28.33]
= 56.301mpa
∂2 = 1/2[84.37-28.33]
= 28.07mpa
This is a 2 d diagram donut is analyzed in 2 direction.
So ∂3 = 0mpa
∂max = 56.301-28.07/2
= 14.116mpa
Answer:
Explanation:
Given data in question
mean stress = 50 MPa
amplitude stress = 225 MPa
to find out
maximum stress, stress ratio, magnitude of the stress range.
solution
we will find first maximum stress and minimum stress
and stress will be sum of (maximum +minimum stress) / 2
so for stress 50 MPa and 225 MPa
=
+
/ 2
50 =
+
/ 2 ...........1
and
225 =
+
/ 2 ...........2
from eqution 1 and 2 we get maximum and minimum stress
= 275 MPa ............3
and
= -175 MPa ............4
In 2nd part we stress ratio is will compute by ratio of equation 3 and 4
we get ratio =
/
ratio = -175 / 227
ratio = -0.64
now in 3rd part magnitude will calculate by subtracting maximum stress - minimum stress i.e.
magnitude =
-
magnitude = 275 - (-175) = 450 MPa
Answer:
A wheelbarrow, a bottle opener, and an oar are examples of second class levers