An iron-carbon alloy initially containing 0.286 wt% C is exposed to an oxygen-rich and virtually carbon-free atmosphere at 1200°
C. Under these circumstances the carbon diffuses from the alloy and reacts at the surface with the oxygen in the atmosphere; that is, the carbon concentration at the surface position is maintained essentially at 0.0 wt% C. At what position will the carbon concentration be 0.215 wt% after a 7 h treatment? The value of D at 1200°C is 7.5 × 10-11 m2/s. z erf(z) z erf(z) z erf(z)
0.00 0.0000 0.55 0.5633 1.3 0.9340
0.025 0.0282 0.60 0.6039 1.4 0.9523
0.05 0.0564 0.65 0.6420 1.5 0.9661
0.10 0.1125 0.70 0.6778 1.6 0.9763
0.15 0.1680 0.75 0.7112 1.7 0.9838
0.20 0.2227 0.80 0.7421 1.8 0.9891
0.25 0.2763 0.85 0.7707 1.9 0.9928
0.30 0.3286 0.90 0.7970 2.0 0.9953
0.35 0.3794 0.95 0.8209 2.2 0.9981
0.40 0.4284 1.0 0.8427 2.4 0.9993
0.45 0.4755 1.1 0.8802 2.6 0.9998
0.50 0.5205 1.2 0.9103 2.8 0.9999
The datum of quality is saying to us that liquid water is in equilibrium with steam. Saturated water table gives information about this liquid-vapour equilibrium. In figure attached, it can be seen that at 350 kPa of pressure (or 3.5 bar) equilibrium temperature is 138.9 °C
fracture will occur as the value is less than E/10 (= 22.5)
Explanation:
If the maximum strength at tip Is greater than theoretical fracture strength value then fracture will occur and if the maximum strength is lower than theoretical fracture strength then no fracture will occur.
= 15 GPa
fracture will occur as the value is less than E/10 = 22.5