Answer:


Explanation:
The distance of the chain would be the product of the dislocation density and the volume of the metal.
Dislocation density = 
Volume of the metal = 



The chain would extend 
Dislocation density = 
Volume of the metal = 


The chain would extend 
Answer:
526.5 KN
Explanation:
The total head loss in a pipe is a sum of pressure head, kinetic energy head and potential energy head.
But the pipe is assumed to be horizontal and the velocity through the pipe is constant, Hence the head loss is just pressure head.
h = (P₁/ρg) - (P₂/ρg) = (P₁ - P₂)/ρg
where ρ = density of the fluid and g = acceleration due to gravity
h = ΔP/ρg
ΔP = ρgh = 1000 × 9.8 × 7.6 = 74480 Pa
Drag force over the length of the pipe = Dynamic pressure drop over the length of the pipe × Area of the pipe that the fluid is in contact with
Dynamic pressure drop over the length of the pipe = ΔP = 74480 Pa
Area of the pipe that the fluid is in contact with = 2πrL = 2π × (0.075/2) × 30 = 7.069 m²
Drag Force = 74480 × 7.069 = 526468.1 N = 526.5 KN
convert 40db to standard gain
AL=10^40/20=100
calculate total voltage gain
=AL×RL/RL+Ri
=83.33
38.41 DB
calculate power
Pi=Vi^2/Ri Po=Vo^2/RL
power gain= Po/Pi
=13.90×10^6
Answer:
The shear plane angle and shear strain are 28.21° and 2.155 respectively.
Explanation:
(a)
Orthogonal cutting is the cutting process in which cutting direction or cutting velocity is perpendicular to the cutting edge of the part surface.
Given:
Rake angle is 12°.
Chip thickness before cut is 0.32 mm.
Chip thickness is 0.65 mm.
Calculation:
Step1
Chip reduction ratio is calculated as follows:


r = 0.4923
Step2
Shear angle is calculated as follows:

Here,
is shear plane angle, r is chip reduction ratio and
is rake angle.
Substitute all the values in the above equation as follows:




Thus, the shear plane angle is 28.21°.
(b)
Step3
Shears train is calculated as follows:


.
Thus, the shear strain rate is 2.155.