Note that a squared pyramid has a square base & 4 equal triangles.
To find the lateral the lateral area you calculate the area of the 4 equal triangles and to find the surface area (total Area) you add the area of the base:
Area of each triangle = side (5) x slant (9) and you divide by 2
==>Aera of 1 triangle = (9x5)/2 = 45/2 & for the 4 triangles
Lateral area = (45/2) x 4 = 90 in²
Now the base area (square) = 5 x 5= 25 in²
so the surface area = 90+25 = 115 in² (answer a)
We are given :

Step 1: factor the part inside square root
The function given inside square root is of quadratic form.
So let us try to factorise it using AC method.
Here A*C = 4*25 = 100
so we have to find factors of 100 that add up to give -20.
the two factors are -10 and -10.
Rewriting the function :

=
=
=
Step 2:
Now we take square root of the factorised form

= 
Answer : (2x-5)
The answer to this is D i did the math i am positive it is right
Add 5x + 5 and that is the bottom of it and the top stays 1
Answer:
12πx⁴, 15x⁷, 16x⁹
Step-by-step explanation:
Volume of a cylinder: πr²h
Volume of a rectangular prism: whl
Plugging in variables for the volume of a cylinder, we get: 3x²·(2x)²·π
3x²·(2x)² = 3·2·2·x·x·x·x
= 12·x⁴
=12x⁴
Now, we just multiply that by π.
12x⁴·π = 12x⁴π
A monomial is a 1-term polynomial, so 12x⁴π is a monomial.
Plugging in variables for the volume of a rectangular prism, we get: 5x³·3x²·x²
5x³·3x² = 5·3·x·x·x·x·x
= 15·x⁵
= 15x⁵
Now, we just multiply that by x².
15x⁵·x²
= 15·x·x·x·x·x·x·x
= 15·x⁷
=15x⁷
A monomial is a 1-term polynomial, so 15x⁷ is a monomial.
Same steps for the last shape, another rectangular prism:
2x²·2x³·4x⁴
2x²·2x³
= 2·2·x·x·x·x·x
= 4·x⁵
= 4x⁵
Now, we just multiply that by 4x⁴.
4x⁵·4x⁴
= 4·4·x·x·x·x·x·x·x·x·x·
= 16·x⁹
= 16x⁹
A monomial is a 1-term polynomial, so 16x⁹ is a monomial.