Answer:
The travel time that separates the top 2.5% of the travel times from the rest is of 91.76 seconds.
Step-by-step explanation:
Normal Probability Distribution
Problems of normal distributions can be solved using the z-score formula.
In a set with mean
and standard deviation
, the z-score of a measure X is given by:
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the p-value, we get the probability that the value of the measure is greater than X.
Mean of 80 seconds and a standard deviation of 6 seconds.
This means that 
What travel time separates the top 2.5% of the travel times from the rest?
This is the 100 - 2.5 = 97.5th percentile, which is X when Z has a p-value of 0.975, so X when Z = 1.96.




The travel time that separates the top 2.5% of the travel times from the rest is of 91.76 seconds.
Answer:
P(X= k) = (1-p)^k-1.p
Step-by-step explanation:
Given that the number of trials is
N < = k, the geometric distribution gives the probability that there are k-1 trials that result in failure(F) before the success(S) at the kth trials.
Given p = success,
1 - p = failure
Hence the distribution is described as: Pr ( FFFF.....FS)
Pr(X= k) = (1-p)(1-p)(1-p)....(1-p)p
Pr((X=k) = (1 - p)^ (k-1) .p
Since N<=k
Pr (X =k) = p(1-p)^k-1, k= 1,2,...k
0, elsewhere
If the probability is defined for Y, the number of failure before a success
Pr (Y= k) = p(1-p)^y......k= 0,1,2,3
0, elsewhere.
Given p= 0.2, k= 3,
P(X= 3) =( 0.2) × (1 - 0.2)²
P(X=3) = 0.128
Answer:
its
Soup ready first
Sandwich ready first
Salad ready first
Step-by-step explanation:
The number of batches of salsa that can be made = x = 6 batches
The number of bat tomato sauce that can be made = y = 3 batches
Step-by-step explanation:
We are given the system of equations:

where variable x represents the number of batches of salsa that can be made and y represents the number of bat tomato sauce that can be made.
We need to solve the systems to find the values of x and y.
Let:

Subtract both equations:

So, value of y=3
Putting value of y in eq(2) and finding value of x:

So, value of x=6
The number of batches of salsa that can be made = x = 6 batches
The number of bat tomato sauce that can be made = y = 3 batches
Keywords: System of equations
Learn more about system of equations at:
#learnwithBrainly