Answer:
26.3 moles of O₂ are needed to react completely with 35.0 mol of FeCl₃
Explanation:
To determine the number of moles of O₂ that are needed to react completely with 35.0 mol of FeCl₃, it is possible to use the reaction stoichiometry of the reaction (that is, the relationship between the amount of reagents and products in a chemical reaction), and rule of three as follows: if 4 moles of FeCl₃ react with 3 moles of O₂, 35 moles of FeCl₃ with how many moles of O₂ will it react?

moles of O₂= 26.25 ≅ 26.3
<u><em>26.3 moles of O₂ are needed to react completely with 35.0 mol of FeCl₃</em></u>
Answer:
58.92 g EDTA
Explanation:
315.1 mL = .3151 L
M = Moles / Liter
.3151 L x <u>0.5 mol EDTA</u> x <u>374 g EDTA</u> = 58.92 g EDTA
1 L EDTA 1 mol EDTA
The answer is CONDENSATION.
Sodium hydroxide solution and hydrogen gas are produced from the reaction of water and sodium.
<h2>Reaction of sodium and water</h2>
We observe bubbles coming out of the water when the sodium reacts with the water because of the formation of hydrogen gas which is insoluble in water so it moves into the atmosphere.
<h3>Products of the reaction</h3>
Sodium metal reacts rapidly with water to form sodium hydroxide (NaOH) solution and hydrogen gas (H2). This chemical reaction is exothermic because huge amount of heat is release from the solution so we can conclude that sodium hydroxide solution and hydrogen gas are produced from the reaction of water and sodium.
Learn more about chemical reaction here: brainly.com/question/26018275
Learn more: brainly.com/question/26167984