The magnitude of a star as it would appear to a hypothetical observer at a distance of 10 parsecs or 32.6 light-years. This rates how visible celestial bodies are when they are all viewed from the same distance. Luminosity: The brightness of a star in comparison with that of the sun.
The best answer among the choices given is option A. Chemical weathering of rocks is a source of dissolved substances in the ocean. It is a process that involves the erosion of rocks due to chemical reactions by water and substances dissolved in the water. Therefore, it most likely the source of dissolved substances.
Answer: sorry I’m late but it is 11 electrons
Explanation:
Answer: As the temperature of a molecular system increases, the kinetic energy of molecules also increase. Also as the temperature of a molecular system decreases, the kinetic energy of the molecules will also decrease.
Explanation:
James Clerk Maxwell developed the kinetic-molecular theory (KMT) of gases. In this theoey, five assumptions concerning an ideal gas was made. One of the them was that," the average kinetic energy of the gas molecules is proportional to the temperature of the gas". This simply means that a s the temperature of a molecular system increases, the kinetic energy of molecules also increase. Also as the temperature of a molecular system decreases, the kinetic energy of the molecules will also decrease.
Also another scientist known as Rudolf Clausius incorporated energy into the kinetic theory. He proposed that heat is a form of energy that affects the temperature of matter by changing the motion of molecules in matter.
Heat is defined as the flow of energy which is caused by difference in temperature.
In conclusion, when the temperature of a system is increased, the collision of the molecules with one another and the walls of their container increases as more molecules gain more heat energy at higher temperature. While as the temperature of the system decreases, the collision of the molecules will also decrease as molecules lose heat energy at lower temperature.