Answer: 
Explanation:
According to the law of conservation of mass, mass can neither be created nor be destroyed. Thus the mass of products has to be equal to the mass of reactants. The number of atoms of each element has to be same on reactant and product side. Thus chemical equations are balanced.
The balanced equation will be:

Answer:
The correct answer to the following question will be "Arrhenius base".
Explanation:
- An Arrhenius base seems to be a material that raises the ion concentration (hydroxide) when exposed to water and thereby reduces the concentration of ions (hydronium).
- This acid, as well as base model, claims an acid is indeed a material that incorporates hydrogen or ionizes protons throughout aqueous, while a base would be a material that comprises hydroxide while releases everything in a that solution
So that the above is the right answer.
Answer:
378mL
Explanation:
The following data were obtained from the question:
Pressure (P) = 99.19 kPa
Temperature (T) = 28°C
Number of mole (n) = 0.015 mole
Volume (V) =...?
Next, we shall convert the pressure and temperature to appropriate units. This is illustrated below:
For Pressure:
101.325 KPa = 1 atm
Therefore, 99.19 kPa = 99.19/101.325 = 0.98 atm
For Temperature:
T(K) = T(°C) + 273
T(°C) = 28°C
T(K) = 28°C + 273 = 301K.
Next we shall determine the volume of N2. The volume of N2 can be obtained by using the ideal gas equation as shown below:
PV = nRT
Pressure (P) = 0.98 atm
Temperature (T) = 301K
Number of mole (n) = 0.015 mole
Gas constant (R) = 0.0821atm.L/Kmol.
Volume (V) =...?
0.98 x V = 0.015 x 0.0821 x 301
Divide both side by 0.98
V = (0.015 x 0.0821 x 301) /0.98
V = 0.378 L
Finally, we shall convert 0.378 L to millilitres (mL). This is illustrated below:
1L = 1000mL
Therefore, 0.378L = 0.378 x 1000 = 378mL
Therefore, the volume of N2 collected is 378mL
Answer:
CaCl2
Explanation:
For every calcium there's 2 chlorine
Answer:
[IBr] = 0.049 M.
Explanation:
Hello there!
In this case, according to the balanced chemical reaction:

It is possible to set up the following equilibrium expression:
![K=\frac{[IBr]^2}{[I_2][Br_2]} =0.0110](https://tex.z-dn.net/?f=K%3D%5Cfrac%7B%5BIBr%5D%5E2%7D%7B%5BI_2%5D%5BBr_2%5D%7D%20%3D0.0110)
Whereas the the initial concentrations of both iodine and bromine are 0.50 M; and in terms of
(reaction extent) would be:

Which can be solved for
to obtain two possible results:

Whereas the correct result is 0.0245 M since negative results does not make any sense. Thus, the concentration of the product turns out:
![[IBr]=2x=2*0.0249M=0.049M](https://tex.z-dn.net/?f=%5BIBr%5D%3D2x%3D2%2A0.0249M%3D0.049M)
Regards!