Heat required to raise the temperature = 159.505 J
<h3>Further explanation</h3>
Given
c = specific heat of Beryllium = 1.825 J/g C
m = mass = 2.3 g
Δt = Temperature difference : 60 - 22 = 38 °C
Required
Heat required
Solution
Heat can be formulated
Q = m.c.Δt
Input the value :
Q = 2.3 x 1.825 x 38
Q = 159.505 J
corrected question:
Determining Density and Using Density to Determine Volume or Mass
(a) Calculate the density of mercury if 1.00 × 10 g occupies a volume of 7.36 cm³
(b) Calculate the volume of 65.0 g of liquid methanol (wood alcohol) if its density is 0.791 g/mL.
(c) What is the mass in grams of a cube of gold (density = 19.32 g/cm) if the length of the cube is 2.00 cm?
(d) Calculate the density of a 374.5-g sample of copper if it has a volume of 41.8 cm³ A student needs 15.0 g of ethanol for an experiment. If the density of ethanol is 0.789 g/mL, how many milliliters of ethanol are needed? What is the mass, in grams, of 25.0 mL of mercury (density = 13.6 g/mL)?
Answer:
density = 
ρ=m/v ,m=ρv, v=m/ρ
(a)m=1*10g , v=7.36cm³
ρ=10/7.36 =1.36g/cm³
(b) m=65g, ρ=0.791 g/mL.
v= 65/0.791 =82.17g/mL
(c) ρ=19.32g/cm³, l=2cm, v=l³=8cm³
m=19..32*8=154.56g/cm³
(d) mass of copper=374.5g , v=41.8cm³
ρ=374.5/41.8 =8.96g/cm³
mass of ethanol=15g, density of ethanol=0.789g/mL
v=15/0.789 =19.01mL
volume of mecury=25mL, density of mercury=13.6g/mL
m=25*13.6=340g
13.4 billion years is 3 times of the half-life, 4.47 billion years. So the Uranium-238 will go through three times of half decay. So the remain percentage will be 50%*50%*50%=12.5%.
Answer: a
Explanation: because an Arrhenius acid is a compound that increases the H + ion concentration in aqueous solution. An Arrhenius base is a compound that increases the OH − ion concentration in aqueous solution.