We have that for the Question "Write an expression for the <em>magnitude </em>of charge moved, Q, in terms of N and the fundamental charge e" it can be said its equation is

From the question we are told
Write an expression for the <em>magnitude </em>of charge moved, Q, in terms of N and the fundamental charge e
<h3>An E
xpression for the <em>magnitude </em>of charge moved</h3>
Generally the equation for the <em>magnitude </em>of charge moved, Q is mathematically given as

Therefore
An expression for the <em>magnitude </em>of charge moved, Q, in terms of N and the fundamental charge e" it can be

For more information on this visit
brainly.com/question/16517842
A red apple absorbs all colors of visible light except red, so red light
is the only light left to bounce off of the apple toward our eyes.
(This is a big part of the reason that we call it a "red" apple.)
Here's how the various items on the list make out when they hit the apple:
<span>Red . . . . . reflected
Orange . . absorbed
Yellow . . . </span><span><span>absorbed
</span>Green . </span><span><span>. . absorbed
</span>Blue . . </span><span><span>. . absorbed
</span>Violet .</span><span> . . absorbed</span>
<span>Black . . . no light; not a color
White . . . has all colors in it</span>
Determine the frequency and the speed of these waves. The wavelength is 8.6 meters and the period is 6.2 seconds. Now find speed using the v = f. λ equation<span>.</span>
It is B. Just did the Quiz on Intro to Business
Answer:
The speed of the two cars after coupling is 0.46 m/s.
Explanation:
It is given that,
Mass of car 1, m₁ = 15,000 kg
Mass of car 2, m₂ = 50,000 kg
Speed of car 1, u₁ = 2 m/s
Initial speed of car 2, u₂ = 0
Let V is the speed of the two cars after coupling. It is the case of inelastic collision. Applying the conservation of momentum as :


V = 0.46 m/s
So, the speed of the two cars after coupling is 0.46 m/s. Hence, this is the required solution.