1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
allsm [11]
4 years ago
5

Ultraviolet light of wavelength 270 nm strikes a metal whose work function is 2.3 eV.What is the shortest de Broglie wavelength

for the electrons that are produced as photoelectrons?
Physics
1 answer:
soldier1979 [14.2K]4 years ago
7 0

Answer:

The shortest de Broglie wavelength for the electrons that are produced as photoelectrons is 0.81 nm

Explanation:

Given;

wavelength of ultraviolet light, λ = 270 nm

work function of the metal, φ = 2.3 eV = 2.3 x 1.602 x 10⁻¹⁹ J = 3.685 x 10⁻¹⁹ J

The energy of the ultraviolet light is given by;

E = \frac{hc}{\lambda}\\\\E = \frac{(6.626*10^{-34} )(3*10^{8}) }{270*10^{-9} }\\\\E = 7.362 * 10^{-19} \ J

The energy of the incident light is related to kinetic energy of the electron and work function of the metal by the following equation;

E = φ  + K.E

K.E = E - φ

K.E = (7.362 x 10⁻¹⁹ J) - (3.685 x 10⁻¹⁹ J )

K.E = 3.677 x 10⁻¹⁹ J

K.E = ¹/₂mv²

mv² = 2K.E

velocity of the electron is given by;

V = \sqrt{\frac{2K.E}{m} }\\\\V =  \sqrt{\frac{2(3.677*10^{-19}) }{9.1*10^{-31} } }\\\\V = 8.99*10^{5}  \ m/s

the shortest de Broglie wavelength for the electrons is given by;

\lambda = \frac{h}{mv}\\ \\\lambda = \frac{6.626*10^{-34} }{(9.1*10^{-31})( 8.99*10^{5} )}\\\\\lambda = 8.10*10^{-10} \ m\\\\\lambda = 0.81 \ nm

Therefore, the shortest de Broglie wavelength for the electrons that are produced as photoelectrons is 0.81 nm

You might be interested in
You grab a hot cookie sheet out of the oven this is an example of ______ energy transfer.
Maru [420]
I would say Conduction because you are touching the cookie sheet, even though it is hot (so heat) you are physically touching it so it would not be radiation
6 0
3 years ago
True or false—If a rock is thrown into the air, the increase in the height would increase the rock’s kinetic energy, and then th
nlexa [21]
I think that this is false but I am not sure
5 0
3 years ago
Establishing a potential difference The deflection plates in an oscilloscope are 10 cm by 2 cm with a gap distance of 1 mm. A 10
Nezavi [6.7K]

Answer:

t = 23.9nS

Explanation:

given :

Area A= 10 cm by 2 cm => 2 x 10^-2m x 10 x 10^-2m

distance d= 1mm=> 0.001

resistor R= 975 ohm

Capacitance can be calculated through the following formula,

C = (ε0  x A )/d

C = (8.85 x 10^-12 x (2 x 10^-2 x 10 x 10^-2))/0.001

C = 17.7 x 10^-12    (pico 'p' = 10^-12)

C = 17.7pF

the voltage between two plates is related to time, There we use the following formula of the final voltage

Vc = Vx (1-e^-(t/CR))  

75 = 100 x (1-e^-(t/CR))

75/100 = (1-e^-(t/CR))

.75 = (1-e^-(t/CR))

.75 -1 = -e^-(t/CR)

-0.25 = -e^-(t/CR)  --->(cancelling out the negative sign)

e^-(t/CR) = 0.25

in order to remove the exponent, take logs on both sides  

-t/CR = ln (0.25)

t/CR = -ln(0.25)

t = -CR x ln (0.25)

t = -(17.7 x 10^-12 x 975) x (-1.38629)

t = 23.9 x 10^{-9  

t = 23.9ns

Thus, it took 23.9ns  for the potential difference between the deflection plates to reach 75 volts

6 0
3 years ago
Read 2 more answers
How much tension is in a rope if it pulls a 5-kg bucket filled with water with an upward acceleration of 1m/s^2
liraira [26]
F=ma
Tension - weight = mass x acceleration
T - 5(9.81) = 5 x 1
T = 5 + 5(9.81)
T = 54.05 N
T ≈ 54 N
4 0
3 years ago
A constant torque is applied to a rigid wheel whose moment of inertia is 2.0 kg · m2 around the axis of rotation. If the wheel s
Jlenok [28]

Answer:

The applied torque is 3.84 N-m.      

Explanation:

Given that,

Moment of inertia of the wheel is 2\ kg-m^2

Initial speed of the wheel is 0 (at rest)

Final angular speed is 25 rad/s

Time, t = 13 s

The relation between moment of inertia and torque is given by :

\tau=I\alpha \\\\\tau=I\times \dfrac{\omega_f}{t}\\\\\tau=2\times \dfrac{25}{13}\\\\\tau=+3.84\ N-m

So, the applied torque is 3.84 N-m.

4 0
3 years ago
Other questions:
  • The police department is excited to have some new motorcycle units. One officer said that these motorcycles can go from 0 miles
    12·1 answer
  • A block of ice of mass 4.30 kg is placed against a horizontal spring that has a force constant k = 250 N/m and is compressed a d
    7·1 answer
  • A mass m is oscillating with amplitude A at the end of a vertical spring of spring constant k. The mass is increased by a factor
    10·1 answer
  • Which of the following statements about cultural variations is true?
    11·1 answer
  • Using the same cost and time estimates, consider any trade-offs that SciTech may have to make to complete the project.
    10·2 answers
  • An experiment is performed to determine how bats capture insects in the dark. A pair of microphones are set up on either end of
    7·1 answer
  • Two boxes on opposite ends of a massless board that is 3.0 m long. The board is supported in the middle by a fulcrum. The box on
    11·1 answer
  • What type of shoes are worn by the mountaineers and why​
    14·1 answer
  • A car travelling at 14.0 m/s approaches a traffic light. The driver applies the brakes and is able to come to halt in 5.6 s. Det
    11·1 answer
  • Question 1:
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!