1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Westkost [7]
3 years ago
10

A specimen of steel has a rectangular cross section 20 mm wide and 40 mm thick, an elastic modulus of 207 GPa, and a Poisson’s r

atio of 0.30. If this specimen is pulled in tension with a force of 60,000 N, what is the change in width if deformation is totally elastic?
Physics
1 answer:
katrin2010 [14]3 years ago
6 0

Answer:

There's a decrease in width of 2.18 × 10^(-6) m

Explanation:

We are given;

Shear Modulus;E = 207 GPa = 207 × 10^(9) N/m²

Force;F = 60000 N.

Poisson’s ratio; υ =0.30

We are told width is 20 mm and thickness 40 mm.

Thus;

Area = 20 × 10^(-3) × 40 × 10^(-3)

Area = 8 × 10^(-4) m²

Now formula for shear modulus is;

E = σ/ε_z

Where σ is stress given by the formula Force(F)/Area(A)

While ε_z is longitudinal strain.

Thus;

E = (F/A)/ε_z

ε_z = (F/A)/E

ε_z = (60,000/(8 × 10^(-4)))/(207 × 10^(9))

ε_z = 3.62 × 10^(-4)

Now, formula for lateral strain is;

ε_x = - υ × ε_z

ε_x = -0.3 × 3.62 × 10^(-4)

ε_x = -1.09 × 10^(-4)

Now, change in width is given by;

Δw = w_o × ε_x

Where w_o is initial width = 20 × 10^(-3) m

So; Δw = 20 × 10^(-3) × -1.09 × 10^(-4)

Δw = -2.18 × 10^(-6) m

Negative means the width decreased.

So there's a decrease in width of 2.18 × 10^(-6) m

You might be interested in
Two stationary point charges of 3.00 nC and 2.00 nC are separated by a distance of 50.0 cm. An electron is released from rest at
andrew-mc [135]

Answer:

1. the electric potential energy of the electron when it is  at the midpoint is - 2.9 x 10^{-17} J

2. the electric potential energy of the electron when it is 10.0 cm from the 3.00 nC charge is - 5.04 x  10^{-17} J

Explanation:

given information:

q_{1} =  3 nC = 3 x 10^{-9} C

q_{2} =  2 nC = 2 x 10^{-9} C

r = 50 cm = 0.5 m

the electric potential energy of the electron when it is  at the midpoint

potential energy of the charge, F

F = k \frac{q_{e}q}{r}

where

k = constant (8.99 x 10^{9} Nm^{2} /C^{2})

electron charge, q_{e} = - 1.6 x 10^{-19} C

since it is measured at the midpoint,

r = \frac{0.5}{2}

  = 0.25 m

thus,

F = F_{1}+ F_{2}

  = k\frac{q_{e} q_{1} }{r} + k\frac{q_{e} q_{2} }{r}

  = \frac{kq_{e} }{r} (q_{1} +q_{2})

  = (8.99 x 10^{9})( - 1.6 x 10^{-19} )(3 x 10^{-9} +2 x 10^{-9})/0.25

  = - 2.9 x 10^{-17} J

the electric potential energy of the electron when it is 10.0 cm from the 3.00 nC charge

r_{1} = 10 cm = 0.1 m

r_{2} = 0.5 - 0.1 = 0.4 m

F = k\frac{q_{e} q_{1} }{r} + k\frac{q_{e} q_{2} }{r}

  = kq_{e}(\frac{q_{1} }{r_{1} }+\frac{q_{2} }{r_{2} })

  = (8.99 x 10^{9})( - 1.6 x 10^{-19} )(3 x 10^{-9} /0.1+2 x 10^{-9}/0.4)

  = - 5.04 x  10^{-17} J

3 0
2 years ago
Un pintor de 75.0 kg sube por una escalera de 2.75 m que está inclinada contra una pared vertical. La escalera forma un ángulo d
dezoksy [38]

Answer:

Work done, W = 1786.17J

Explanation:

The question says "A 75.0-kg painter climbs a 2.75-m ladder that is leaning against a vertical wall. The ladder makes an angle of 30.0 ° with the wall. How much work (in Joules) does gravity do on the painter? "

Mass of a painter, m = 75 kg

He climbs 2.75-m ladder that is leaning against a vertical wall.

The ladder makes an angle of 30 degrees with the wall.

We need to find the work done by the gravity on the painter.

The angle between the weight of the painter and the displacement is :

θ = 180 - 30

= 150°

The work done by the gravity is given by :

W=Fd\cos\theta\\\\=75\times 10\times 2.75\times \cos30\\\\=1786.17\ J

Hence, the required work done is 1786.17 J.

6 0
2 years ago
Is there any machine that is 100% efficient? why?why not
denis-greek [22]

Answer:

No, it's not there.

Explanation:

For a machine to be 100% efficient, it has to be with an output which is equal to its input. But machines have an out put less than an input, hence efficiency below 100%.

7 0
3 years ago
What is a property of “normal force”? a. It always points perpendicular to the contact surface. b. It always points parallel to
OleMash [197]

Answer:

a. It always points perpendicular to the contact surface.

Explanation:

"Normal" means perpendicular.  Normal forces are always perpendicular to the contact surface.

6 0
2 years ago
Which of theses substances would be a poor conductor of electricity
lys-0071 [83]

Answer:

B. Water and sugar.

Explanation:

In the given options water and sugar would be the poor conductor of electricity. Other given options such as water and salt, water and Hcl and water and NaOH are better conductor of electricity because Hcl ,NaOH, salt (Nacl) can break into their ionic form whereas water and sugar will not.

8 0
3 years ago
Other questions:
  • What is the defenition of mass
    10·2 answers
  • What is process that involves the collection of information and ideas supported by belief or opinion for science?
    6·1 answer
  • Which statement is true about the difference between calcium carbonate and calcium oxide?
    12·1 answer
  • During which phase of mitosis do the chromosomes line up across the center of the cell?
    7·1 answer
  • What happens to a low-mass star after helium flash?
    6·1 answer
  • A stone with a mass of 0.700kg is attached to one end of a string 0.600m long. The string will break if its tension exceeds 65.0
    15·1 answer
  • Erica (38 kgkg ) and Danny (46 kgkg ) are bouncing on a trampoline. Just as Erica reaches the high point of her bounce, Danny is
    8·1 answer
  • The period of a sound wave is 0.002 seconds. The speed of sound is 344 m/s. whats the frequency
    15·1 answer
  • Atoms giving up valence electrons indicates that an ionic bond is present ture or false
    5·2 answers
  • Which mineral is also an element graphite courts calcite hematite
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!