a) The acceleration of gravity is ![4.96 m/s^2](https://tex.z-dn.net/?f=4.96%20m%2Fs%5E2)
b) The critical velocity is 6668 m/s (24,006 km/h)
c) The period of the orbit is 8452 s
d) The satellite completes 10.2 orbits per day
e) The escape velocity of the satellite is 9430 m/s
f) The escape velocity of the rocket is 11,191 m/s
Explanation:
a)
The acceleration of gravity for an object near a planet is given by
![g=\frac{GM}{(R+h)^2}](https://tex.z-dn.net/?f=g%3D%5Cfrac%7BGM%7D%7B%28R%2Bh%29%5E2%7D)
where
G is the gravitational constant
M is the mass of the planet
R is the radius of the planet
h is the height above the surface
In this problem,
(mass of the Earth)
(Earth's radius)
(altitude of the satellite)
Substituting,
![g=\frac{(6.67\cdot 10^{-11})(5.98\cdot 10^{24}}{(6.37\cdot 10^6 + 2.60\cdot 10^6)^2}=4.96 m/s^2](https://tex.z-dn.net/?f=g%3D%5Cfrac%7B%286.67%5Ccdot%2010%5E%7B-11%7D%29%285.98%5Ccdot%2010%5E%7B24%7D%7D%7B%286.37%5Ccdot%2010%5E6%20%2B%202.60%5Ccdot%2010%5E6%29%5E2%7D%3D4.96%20m%2Fs%5E2)
b)
The critical velocity for a satellite orbiting around a planet is given by
![v=\sqrt{\frac{GM}{R+h}}](https://tex.z-dn.net/?f=v%3D%5Csqrt%7B%5Cfrac%7BGM%7D%7BR%2Bh%7D%7D)
where we have again:
(mass of the Earth)
(Earth's radius)
(altitude of the satellite)
Substituting,
![v=\sqrt{\frac{(6.67\cdot 10^{-11})(5.98\cdot 10^{24}}{(6.37\cdot 10^6 + 2.60\cdot 10^6)}}=6668 m/s](https://tex.z-dn.net/?f=v%3D%5Csqrt%7B%5Cfrac%7B%286.67%5Ccdot%2010%5E%7B-11%7D%29%285.98%5Ccdot%2010%5E%7B24%7D%7D%7B%286.37%5Ccdot%2010%5E6%20%2B%202.60%5Ccdot%2010%5E6%29%7D%7D%3D6668%20m%2Fs)
Converting into km/h,
![v=6668 m/s \cdot \frac{3600 s/h}{1000 m/km}=24,006 km/h](https://tex.z-dn.net/?f=v%3D6668%20m%2Fs%20%5Ccdot%20%5Cfrac%7B3600%20s%2Fh%7D%7B1000%20m%2Fkm%7D%3D24%2C006%20km%2Fh)
c)
The period of the orbit is given by the circumference of the orbit divided by the velocity:
![T=\frac{2\pi (R+h)}{v}](https://tex.z-dn.net/?f=T%3D%5Cfrac%7B2%5Cpi%20%28R%2Bh%29%7D%7Bv%7D)
where
![R=6.37\cdot 10^6 m](https://tex.z-dn.net/?f=R%3D6.37%5Ccdot%2010%5E6%20m)
![h=2.60\cdot 10^6 m](https://tex.z-dn.net/?f=h%3D2.60%5Ccdot%2010%5E6%20m)
v = 6668 m/s
Substituting,
![T=\frac{2\pi (6.37\cdot 10^6 + 2.60\cdot 10^6)}{6668}=8452 s](https://tex.z-dn.net/?f=T%3D%5Cfrac%7B2%5Cpi%20%286.37%5Ccdot%2010%5E6%20%2B%202.60%5Ccdot%2010%5E6%29%7D%7B6668%7D%3D8452%20s)
d)
One day consists of:
![t = 24 \frac{hours}{day} \cdot 60 \frac{min}{hours} \cdot 60 \frac{s}{min}=86400 s](https://tex.z-dn.net/?f=t%20%3D%2024%20%5Cfrac%7Bhours%7D%7Bday%7D%20%5Ccdot%2060%20%5Cfrac%7Bmin%7D%7Bhours%7D%20%5Ccdot%2060%20%5Cfrac%7Bs%7D%7Bmin%7D%3D86400%20s)
While the period of the orbit is
T = 8452 s
So, the number of orbits completed by the satellite in one day is
![n=\frac{t}{T}=\frac{86400}{8452}=10.2](https://tex.z-dn.net/?f=n%3D%5Cfrac%7Bt%7D%7BT%7D%3D%5Cfrac%7B86400%7D%7B8452%7D%3D10.2)
e)
The escape velocity for an object in the gravitational field of a planet is given by
![v=\sqrt{\frac{2GM}{R+h}}](https://tex.z-dn.net/?f=v%3D%5Csqrt%7B%5Cfrac%7B2GM%7D%7BR%2Bh%7D%7D)
where here we have:
![M=5.98\cdot 10^{24} kg](https://tex.z-dn.net/?f=M%3D5.98%5Ccdot%2010%5E%7B24%7D%20kg)
![R=6.37\cdot 10^6 m](https://tex.z-dn.net/?f=R%3D6.37%5Ccdot%2010%5E6%20m)
![h=2.60\cdot 10^6 m](https://tex.z-dn.net/?f=h%3D2.60%5Ccdot%2010%5E6%20m)
Substituting, we find
![v=\sqrt{\frac{2(6.67\cdot 10^{-11})(5.98\cdot 10^{24}}{(6.37\cdot 10^6 + 2.60\cdot 10^6)}}=9430 m/s](https://tex.z-dn.net/?f=v%3D%5Csqrt%7B%5Cfrac%7B2%286.67%5Ccdot%2010%5E%7B-11%7D%29%285.98%5Ccdot%2010%5E%7B24%7D%7D%7B%286.37%5Ccdot%2010%5E6%20%2B%202.60%5Ccdot%2010%5E6%29%7D%7D%3D9430%20m%2Fs)
f)
We can apply again the formula to find the escape velocity for the rocket:
![v=\sqrt{\frac{2GM}{R+h}}](https://tex.z-dn.net/?f=v%3D%5Csqrt%7B%5Cfrac%7B2GM%7D%7BR%2Bh%7D%7D)
Where this time we have:
![M=5.98\cdot 10^{24} kg](https://tex.z-dn.net/?f=M%3D5.98%5Ccdot%2010%5E%7B24%7D%20kg)
![R=6.37\cdot 10^6 m](https://tex.z-dn.net/?f=R%3D6.37%5Ccdot%2010%5E6%20m)
, because the rocket is located at the Earth's surface, so its altitude is zero.
And substituting,
![v=\sqrt{\frac{2(6.67\cdot 10^{-11})(5.98\cdot 10^{24}}{(6.37\cdot 10^6)}}=11,191 m/s](https://tex.z-dn.net/?f=v%3D%5Csqrt%7B%5Cfrac%7B2%286.67%5Ccdot%2010%5E%7B-11%7D%29%285.98%5Ccdot%2010%5E%7B24%7D%7D%7B%286.37%5Ccdot%2010%5E6%29%7D%7D%3D11%2C191%20m%2Fs)
Learn more about gravitational force:
brainly.com/question/1724648
brainly.com/question/12785992
#LearnwithBrainly