Answer:
The z-score for the 34-week gestation period baby is 0.61
Step-by-step explanation:
The formula for calculating a z-score is is z = (x-μ)/σ,
where x is the raw score,
μ is the population mean
σ is the population standard deviation.
We are told in the question that:
Babies born after a gestation period of 32-35 weeks have a mean weight of 2600 grams and a standard deviation of 660 grams. Also, we are supposing a 34-week gestation period baby weighs 3000grams
The z-score for the 34-week gestation period baby is calculated as:
z = (x-μ)/σ
x = 3000, μ = 2600 σ = 660
z = 3000 - 2600/660
= 400/660
=0.6060606061
Approximately, ≈ 0.61
Answer:
P ( -1 < Z < 1 ) = 68%
Step-by-step explanation:
Given:-
- The given parameters for standardized test scores that follows normal distribution have mean (u) and standard deviation (s.d) :
u = 67.2
s.d = 4.6
- The random variable (X) that denotes standardized test scores following normal distribution:
X~ N ( 67.2 , 4.6^2 )
Find:-
What percent of the data fell between 62.6 and 71.8?
Solution:-
- We will first compute the Z-value for the given points 62.6 and 71.8:
P ( 62.6 < X < 71.8 )
P ( (62.6 - 67.2) / 4.6 < Z < (71.8 - 67.2) / 4.6 )
P ( -1 < Z < 1 )
- Using the The Empirical Rule or 68-95-99.7%. We need to find the percent of data that lies within 1 standard about mean value:
P ( -1 < Z < 1 ) = 68%
P ( -2 < Z < 2 ) = 95%
P ( -3 < Z < 3 ) = 99.7%
Answer:
x=-3
Step-by-step explanation:
If x=-3, then
x³+x²-2x+12=-27+9+6+12=-27+27=0
If this is true, then x+3 is a factor. So:
x³+x²-2x+12/x+3=x²-2x+4
So the factors of x³+x²-2x+12 are:
(x+3)(x²-2x+4)
((x²-2x+4) has no real roots)........