Answer:
0.5188 M or 0.5188 mol/L
Explanation:
Concentration is calculated as <u>molarity</u>, which is the number of moles per litre.
***Molarity is represented by either "M" or "c" depending on your teacher. I will use "c".
The formula for molarity is:
n = moles (unit mol)
V = volume (unit L)
<u>Find the molar mass (M) of potassium hydroxide.</u>

<u>Calculate the moles of potassium hydroxide.</u>


Carry one insignificant figure (shown in brackets).
<u>Convert the volume of water to litres.</u>


Here, carrying an insignificant figure doesn't change the value.
<u>Calculate the concentration.</u>

<= Keep an insignificant figure for rounding
<= Rounded up
<= You use the unit "M" instead of "mol/L"
The concentration of this standard solution is 0.5188 M.
Answer:
will this help ?
Explanation:
(108Hs) is a synthetic element, and thus a standard atomic weight cannot be given. Like all synthetic elements, it has no stable isotopes. The first isotope to be synthesized was 265Hs in 1984. There are 12 known isotopes from 263Hs to 277Hs and 1–4 isomers. The most stable isotope of hassium cannot be determined based on existing data due to uncertainty that arises from the low number of measurements. The confidence interval of half-life of 269Hs corresponding to one standard deviation (the interval is ~68.3% likely to contain the actual value) is 16 ± 6 seconds, whereas that of 270Hs is 9 ± 4 seconds. It is also possible that 277mHs is more stable than both of these, with its half-life likely being 110 ± 70 seconds, but only one event of decay of this isotope has been registered as of 2016.[1][2].
Is it the dry lab/wet lab week 1 or ?
Answer:
Explanation:
Sound travels outwards from the source in all directions. So there you have it sound does travel faster in warm air BUT it may appear to travel farther in cold air. This is how that works……if the air close to the ground is colder than the air above it then sound waves travelling upwards will be bent downwards.