Answer:
The formula to calculate the coefficient of friction is μ = f÷N. The friction force, f, always acts in the opposite direction of the intended or actual motion, but only parallel to the surface.
Answer:
For small temperature difference between a body and its surrounding, the rate of cooling of the body is directly proportional to the temperature difference and the surface area exposed. qf = final temperature of object
Explanation:
hope this helps you sorry if it doesn’t help you
Answer:
b
Explanation:
just took it sondjdjndjjrjridj
Answer:
(a) Precipitation hardening - 1, 2, 4
(b) Dispersion strengthening - 1, 3, 5
Explanation:
The correct options for each are shown as follows:
Precipitation hardening
From the first statement; Dislocation movement is limited by precipitated particles. This resulted in an expansion in hardness and rigidity. Precipitates particles are separated out from the framework after heat treatment.
The aging process occurs in the second statement; because it speaks volumes on how heated solutions are treated with alloys above raised elevated temperature. As such when aging increases, there exists a decrease in the hardness of the alloy.
Also, for the third option for precipitation hardening; This cycle includes the application of heat the alloy (amalgam) to a raised temperature, maintaining such temperature for an extended period of time. This temperature relies upon alloying components. e.g. Heating of steel underneath eutectic temperature. Subsequent to heating, the alloy is extinguished and immersed in water.
Dispersion strengthening
Here: The effect of hearting is not significant to the hardness of alloys hardening by the method in statement 3.
In statement 5: The process only involves the dispersion of particles and not the application of heat.
Answer:
See explaination
Explanation:
LM358 is the useful IC which works as buffer. It enables circuit to remove overloading effect on each other. Image is in attachment.
We can define a light-emitting diode (LED) as a semiconductor light source that emits light when current flows through it. Electrons in the semiconductor recombine with electron holes, releasing energy in the form of photons
See attached file for detailed solution of the given problem.