Answer:
The major effects of ice accretion on the aircraft is that it disturbs the flow of air and effects the aircraft's performance.
Explanation:
The ice accretion effects the longitudinal stability of an aircraft as:
1. The accumulation of ice on the tail of an aircraft results in the reduction the longitudinal stability and the elevator's efficacy.
2. When the flap is deflected at
with no power there is an increase in the longitudinal velocity.
3. When the angle of attack is higher close to the stall where separation occurs in the early stages of flow, the effect of ice accretion are of importance.
4. When the situation involves no flap at reduced power setting results in the decrease in aircraft's longitudinal stability an increase in change in coefficient of pitching moment with attack angle.
Answer:
(a) 2.5 ksi
(b) 0.1075 in
Explanation:
(a)

Making
the subject then

where
is the stress and
is the strain
Since strain is given as 0.025% of the length then strain is 
Now substituting E for
then

(b)
Stress,
making A the subject then


where d is the diameter and subscripts o and i denote outer and inner respectively.
We know that
where t is thickness
Now substituting



But the outer diameter is given as 2 in hence



As already mentioned, 

Answer: smallest will be 000,.111 84.
Explanation:
Answer:
speed by mass attain is 55.86 m/s
Explanation:
given data
glucose = 10 g
mass = 100 kg
to find out
speed by mass attain
solution
we know glucose have 180 g molecular weight and
that 1 g glucose produce energy = 2816/180 × 10³ J
so here 10 g of glucose produce energy = 1.56 ×
J
so here energy release = 1/2 × mv²
1.56 ×
= 1/2 × (100)v²
v² = 3.12 × 10³
and v = 55.86 m/s
so speed by mass attain is 55.86 m/s
I think it’s manufacturing