Answer:
The pressure in the gas is 656mmHg
Explanation:
In calculating the pressure of the gas;
step 1: convert the height of the mercury arm to mmHg
9.60cm = 96.0 mmHg
step 2: convert 752 torr to mmHg
I torr is 1 mmHg
752 torr = 752mmHg
Step 3: since the level of mercury in the container is higher than the level of mercury exposed to the atmosphere, we substrate the values to obtain our pressure.
So, 752mmHg - 96mmHg = 656mmHg
The pressure in the gas container is therefore 656mmHg.
N. B : if the mercury arm is in lower position, you add.
10 mols platinum * 6.02*10^23 atoms = 6.02*10^23 atoms in platinum
Water has highest flow rate
Answer: There are 3.2 moles of gas if you have a volume of 38.0 L under a pressure of 1430 mmHg at standard temperature.
Explanation:
Given: Volume = 38.0 L
Pressure = 1430 mm Hg (1 mm Hg = 0.00131579 atm) = 1.9 atm
Temperature = 273.15 K
Using ideal gas equation, the moles of gas will be calculated as follows.

where,
P = pressure
V = volume
n = no. of moles
R = gas constant = 0.0821 L atm/mol K
T =temperature
Substitute the values into above formula as follows.

Thus, we can conclude that there are 3.2 moles of gas if you have a volume of 38.0 L under a pressure of 1430 mmHg at standard temperature.
Answer:
atomic number
Explanation:
The periodic table is a table that lists all of the chemical elements in order of atomic number, starting with hydrogen and ending with oganesson. The number of protons in the nucleus of an atom of a certain element is its atomic number.
Have a good day :)