Answer:
B: The center of data is shown by the mean, which is 43.
Step-by-step explanation:
Add up all the digits (33+38+38+40+44+51+57)/7=43 the mean. The mean is always teh center of data so it's B. Hope this helps.
I believe the answer is D.
No, it is not a proportional relationship because the graph does not go through the origin.
parallel means "same slope (m)"
m =
= 
Now, input the point (0, 0) and the slope
into the Point-Slope formula:
y - y₁ = m(x - x₁)
y - 0 =
(x - 0)
y = 
3y = -5x <em>multiplied both sides by 3</em>
0 = -5x - 3y <em>subtracted 3y from both sides</em>
Answer: C
This graph has a horizontal asymptote so it is an exponential graph. It also passes through two points (0,-2) and (1,3). The horizontal asymptote is at y=-3.
The unchanged exponential equation is y=a(b)^x +k
For exponential equations, k is always equal to the horizontal asymptote, so k=-3.
You can check this with the ordered pair (0,-2). After that plug in the other ordered pair, (1,3).
This gives you 3=a(b)^1 or 3=ab. If you know the base the answer is simple as you just solve for a.
If you don't know the base at this point you have to sort of guess. For example, let's say both a and b are whole numbers. In that case b would have to be 3, as it can't be 1 since then the answer never changes, and a is 1. Then choose an x-value and not exact corresponding y-value. In this case x=-1 and y= a bit less than -2.75. Plug in the values to your "final" equation of y=(3)^x -3.
So -2.75=(3^-1)-3.
3^-1 is 1/3, 1/3-3 is -8/3 or -2.6667 which is pretty close to -2.75. So we can say the final equation is y=3^x -3.
Hope this helps! It's a lot easier to solve problems like these given either more points which you can use system of equations with, or with a given base or slope.
Answer:
Your number is (3 sqrt(2)) / sqrt(2) = 3, and is a rational number indeed. I don't know exactly how to interpret the rest of the question. If r is a positive rational number and p is some positive real number, then sqrt(r^2 p) / sqrt(p) is always rational, being equal r. Possibly your question refers to situtions in which sqrt(c) is not uniquely determined, as for c negative real number or complex non-real number. In those situations a discussion is necessary. Also, in general expressions the discussion is necesary, because the denominator must be different from 0, and so on.
Step-by-step explanation: