Answer:
See explanation and picture below
Explanation:
First, in the case of methyloxirane (Also known as propilene oxide) the mechanism that is taking place there is something similar to a Sn2 mechanism. Although a Sn2 mechanism is a bimolecular substitution taking place in only step, the mechanism followed here is pretty similar after the first step.
In both cases, the H atom of the HBr goes to the oxygen in the molecule. You'll have a OH⁺ in both. However, in the case of methyloxirane the next step is a Sn2 mechanism step, the bromide ion will go to the less substitued carbon, because the methyl group is exerting a steric hindrance. Not a big one but it has a little effect there, that's why the bromide will rather go to the carbon with more hydrogens. and the final product is formed.
In the case of phenyloxirane, once the OH⁺ is formed, the next step is a Sn1 mechanism. In this case, the bond C - OH⁺ is opened on the side of the phenyl to stabilize the OH. This is because that carbon is more stable than the carbon with no phenyl. (A 3° carbon is more stable than a 2° carbon). Therefore, when this bond opens, the bromide will go there in the next step, and the final product is formed. See picture below for mechanism and products.
Answer: picture shows work for # 1,2,4,5,7
Explanation:
number 3: as the pressure in the volume decreases, the volume increases causing it to expand and eventually blow.
number 6: because the temperature and the amount of gas don’t change, these terms don’t appear in the equation. What Boyle’s law means is that the volume of a mass of gas is inversely proportional to its pressure. This linear relationship between pressure and volume means doubling the volume of a given mass of gas decreases its pressure by half.
hope this helps :))
When the block of iron is placed in water the volume of water that is displaced is 27.0 cm³
<u><em> calculation</em></u>
The volume water that is displaced is equal to volume of block of the iron
volume of block of iron = length x width x height
length= 3 cm
width = 3 cm
height = 3 cm
volume is therefore = 3 cm x 3 cm x 3 cm = 27 cm³ therefore the volume displaced = 27 cm³ since the volume of water displaced is equal to volume of block.
Answer:
49.5J/°C
Explanation:
The hot water lost some energy that is gained for cold water and the calorimeter.
The equation is:
Q(Hot water) = Q(Cold water) + Q(Calorimeter)
<em>Where:</em>
Q(Hot water) = S*m*ΔT = 4.184J/g°C*54.56g*(80.4°C-59.4°C) = 4794J
Q(Cold water) = S*m*ΔT = 4.184J/g°C*47.24g*(59.4°C-40°C) = 3834J
That means the heat gained by the calorimeter is
Q(Calorimeter) = 4794J - 3834J = 960J
The calorimeter constant is the heat gained per °C. The change in temperature of the calorimeter is:
59.4°C-40°C = 19.4°C
And calorimeter constant is:
960J/19.4°C =
<h3>49.5J/°C</h3>
<em />
<h3>
Answer:</h3>
2Fe(s) + 3H₂SO₄ → Fe₂(SO₄)₃ + 3H₂(g)
<h3>
Explanation:</h3>
The equation for the reaction between iron metal and sulfuric acid is given by;
Fe(s) + H₂SO₄ → Fe₂(SO₄)₃ + H₂(g)
We are supposed to balance the equation:
What do we mean by balancing a chemical equation?
- Balancing a chemical equations means that we want to make sure the number of atoms of each element is the same on both sides of the equation.
How is balancing done?
- Balancing of chemical equations is try and error process that is done by putting appropriate coefficients on the reactants and products to equate the number of atoms of each element.
Why are subscripts on the compounds not changed?
- Subscripts in a compound show the actual number of atoms of each element in the compound and therefore can never be altered with because it will distort the chemical compound.
Why is it necessary to balance chemical equations?
- Chemical equations are balanced for them to obey the law of conservation of mass.
- According to this law, the mass of the reactants should be equal to the mass of products, which is achieved through balancing an equation.
What is the required balanced equation?
- The equation given can be balanced by putting the coefficients 2, 3, 1, 3 in that order on the reactants and products.
- Therefore, the balanced chemical equation is;
2Fe(s) + 3H₂SO₄ → Fe₂(SO₄)₃ + 3H₂(g)