Answer:
You first need to construct a balanced chemical equation to describe the reaction:
KOH + HNO3 ---------> KNO3 + H2O
Work out the no. moles of HNO3 being neutralized:
Moles = Volume x Concentration = (25/1000) x 0.0150 = 0.000375 moles
From the balanced equation the molar ratio of KOH to HNO3 is 1:1 so you also need 0.000375 moles of KOH to neutralise the nitric acid
Now you can work out the volume of KOH required:
Volume = Moles/Concentration = (0.000375)/0.05 = 0.0075 dm^3 = 7.5 cm^3
Http://chemistry.about.com/od/chemistryterminology/a/What-Is-The-Difference-Between-Molarity-And-Mol...
Answer: Sharp spines and waxy stems
Chemical reaction: Ba(NO₃)₂ + H₂SO₄ → BaSO₄ + 2HNO₃.
V(H₂SO₄) = 250 mL ÷ 1000 mL/L = 0,25 L.
m(BaSO₄) = 0,55 g.
n(BaSO₄) = m(BaSO₄) ÷ M(BaSO₄).
n(BaSO₄) = 0,55 g ÷ 233,38 g/mol.
n(BaSO₄) = 0,00235 mol.
From chemical reaction: n(BaSO₄) : n(Ba(NO₃)₂) = 1 : 1.
n(Ba(NO₃)₂) = 0,00235 mol.
c(Ba(NO₃)₂) = n(Ba(NO₃)₂) ÷ V.
c(Ba(NO₃)₂) = 0,00235 mol ÷ 0,25 L.
c(Ba(NO₃)₂) = 0,0095 mol/L.
good luck with that. I thought I had it, but it was not right.