We can write the balanced equation for the synthesis reaction as
H2(g) + Cl2(g) → 2HCl(g)
We use the molar masses of hydrogen chloride gas HCl and hydrogen gas H2 to calculate for the mass of hydrogen gas H2 needed:
mass of H2 = 146.4 g HCl *(1 mol HCl / 36.46 g HCl) * (1 mol H2 / 2 mol HCl) *
(2.02 g H2 / 1 mol H2)
= 4.056 g H2
We also use the molar masses of hydrogen chloride gas HCl and chlorine gas CL2 to calculate for the mass of hydrogen gas H2:
mass of CL2 = 146.4 g HCl *(1 mol HCl / 36.46 g HCl) * (1 mol Cl2 / 2 mol HCl) *
(70.91 g Cl2 / 1 mol Cl2)
= 142.4 g Cl2
Therefore, we need 4.056 grams of hydrogen gas and 142.4 grams of chlorine gas to produce 146.4 grams of hydrogen chloride gas.
The volume of H₂O = 5 L
<h3>Further explanation</h3>
Given
5L of H₂ and 3L O₂
Reaction
2H₂ (g) + O₂(g) ⇒2H₂O(g)
Required
The volume of H₂O
Solution
Avogadro's hypothesis:
<em>In the same T,P and V, the gas contains the same number of molecules </em>
So the ratio of gas volume will be equal to the ratio of gas moles
mol H₂ = 5, mol O₂ = 3
From equation, mol ratio H₂ : O₂ = 2 : 1, so :

mol H₂O based on mol H₂, and from equation mol ratio H₂ : H₂O=2 : 2, so mol H₂O = 5 mol and the volume also 5 L
Reactant are those that combine or reacts to give products !!
so in combustion of ethane ; ethane and o2 are reactants so ... your answer is B !!
Answer:
See explanation
Explanation:
We know that photosynthesis involves the combination of carbon dioxide and water in the presence of sunlight to yield glucose.
If the atmosphere is rich in carbon dioxide such as in a green house where air is filled with carbon dioxide, the rate of photosynthesis is increased.
As the rate of photosynthesis is increased, the growth of plants is also increased.
Hence, in a greenhouse where the air contains more carbon dioxide, the rate of plant growth increases.