Answer:
[Ca²⁺] = 1M
[NO₃⁻] = 2M
Explanation:
Calcium nitrate dissociates in water as follows:
Ca(NO₃)₂ ⇒ Ca²⁺ + 2NO₃⁻
The moles of Ca²⁺ can be found using the molar relationship between Ca(NO₃)₂ and Ca²⁺
(0.100mol Ca(NO₃)₂) (Ca²⁺ /Ca(NO₃)₂) = 0.100 mol Ca²⁺
The concentration of Ca²⁺ is then:
[Ca²⁺] = n/V = (0.100mol)/(100.0mL) x (1000ml)/(1L) = 1M
Similarly, moles of NO₃⁻ can be found using the molar relationship between Ca(NO₃)₂ and NO₃⁻:
(0.100mol Ca(NO₃)₂) (2NO₃⁻/Ca(NO₃)₂) = 0.200 mol NO₃⁻
The concentration of NO₃⁻ is then:
[NO₃⁻] = (0.200mol)/(100.0mL) x (1000ml)/(1L) = 2M
Answer:
The O is being oxidized, but at the same time, is being reducted.
Explanation:
H₂O₂(l) + ClO₂(aq) → ClO₂(aq) + O₂(g)
In this reaction, we have 4 compounds:
Hydrogen peroxide
Chlorine dioxide (twice)
Oxygen
In both dioxide, the Cl acts with +4 in oxidation state; the oxygen acts with -2.
Oxgen in ground state has 0, as oxidation number.
In peroxide, the H acts with +1 but the oxygen acts with -1.
Peroxide is making the oxidation number from the O in the ClO₂, to decrease (reduction) and to increase in the O, at the ground state.
Hydrogen peroxide is a good reducing and oxidizing agent at the same time.
I believe 212.5m, but I may be wrong, I’m a little rusty with moles
Answer:
d. The gold(III) ion is most easily reduced.
Explanation:
The standard reduction potentials are
Au³⁺ + 3e⁻ ⟶ Au; 1.50 V
Hg²⁺ + 2e⁻ ⟶ Hg; 0.85 V
Zn²⁺ + 2e⁻ ⟶ Zn; -0.76 V
Na⁺ + e⁻ ⟶ Na; -2.71 V
A <em>more positive voltage</em> means that there is a <em>stronger driving force</em> for the reaction.
Thus, Au³⁺ is the best acceptor of electrons.
Reduction Is Gain of electrons and, Au³⁺ is gaining electrons, so
Au³⁺ is most easily reduced.
It is True because in the periodic table of elements, there are seven horizontal rows of elements called periods. The vertical columns of elements are called groups, or families.