First, let's compute the number of moles in the system assuming ideal gas behavior.
PV = nRT
(663 mmHg)(1atm/760 mmHg)(60 L) = n(0.0821 L-atm/mol-K)(20+273 K)
Solving for n,
n = 2.176 moles
At standard conditions, the standard molar volume is 22.4 L/mol. Thus,
Standard volume = 22.4 L/mol * 2.176 mol =<em> 48.74 L</em>
Answer:
The new volume will be 42, 7 L.
Explanation:
We use the gas formula, which results from the combination of the Boyle, Charles and Gay-Lussac laws. According to which at a constant mass, temperature, pressure and volume vary, keeping constant PV / T. The conditions STP are: 1 atm of pressure and 273 K of temperature.
P1xV1/T1 =P2xV2/T2
1 atmx 22,4 L/273K = 0,5atmx V2/260K
V2=((1 atmx 22,4 L/273K )x 260K)/0,5 atm= 42, 67L
A) B). That’s it I hope it’s help.
Answer:
1. The electronic configuration of X is: 1s2 2s2 sp6 3s2
2. The configuration of the anion of Y (i.e Y^2-) is 1s2 2s2 2p6
3. The formula of the compound form by X and Y is given as: XY
Explanation:
For X to loss two electrons, it means X is a group 2 element. X can be any element in group 2. The electronic configuration of X is:
1s2 2s2 sp6 3s2
To get the electronic configuration of the anion of element Y, let us find the configuration of element Y. This is done as follows:
Y receives two electrons from X to complete its octet. Therefore Y is a group 6 element. The electronic configuration of Y is given below
1s2 2s2 2p4
The configuration of the anion of Y (i.e Y^2-) is 1s2 2s2 2p6
The formula of the compound form by X and Y is given below :
X^2+ + Y^2- —> XY
Their valency will cancel out thus forming XY