Answer:
5.01×10⁴ J.
Explanation:
Applying,
q = Cm....................... Equation 1
Where q = amount of heat needed to melt the ice, m = mass of the ice, C = specific latent heat of ice.
From the question,
Given: m = 150 g = (150/1000) kg = 0.15 kg, C = 3.34×10⁵ J/kg
Substitute these values into equation 1
q = (0.15×3.34×10⁵)
q = 0.501×10⁵ J
q = 5.01×10⁴ J.
Electrical charges on one or more particles within the field cause the electric field
Each point in space has an electric field associated with it when a charge of any kind is present. The value of E, often known as the electric field strength, electric field intensity, or just the electric field, expresses the strength and direction of the electric field
A region of space surrounding an electrically charged particle or object known as an electric field is one in which an electric charge would experience force. A vector quantity called an electric field can be represented by arrows pointing in the direction of or away from charges. The force per unit charge exerted on a positive test charge that is at rest at a given position is the force per unit charge that is used to define the electric field analytically.
To learn more about electric field please visit - brainly.com/question/15800304
#SPJ1
Explanation:
spherical lenses which are curved outward are CONVEX lenses
Answer:
6.32m/s
Explanation:
note:Now these calculations are based in the fact that acc. due to gravity is 10m/s²
okay so I'm thinking you think the speed of a body depends on the mass of the body also,umh... well it doesn't at all!
when two bodies of different masses fall from the same height,they fall at the same time( this is just to say)
now enough of the talking let solve....
so the ball was dropped .ie from rest to the ground through a distance of 2m,
the formula for calculating the distance if a body moving in a straight line is given by:
S=ut + ½at² where u is initial velocity, a is acceleration ( of the body or due to gravity, but since its falling freely under the influence of gravity its " we use the acceleration due to gravity ,which is 10m/s²) and t is the time taken to cover the distance.
from our question the ball was dropped from rest thus its u is 0 therefore we use this equation to find the time it took to touch ground (S=½at²)
solving ....
we get t to be 0.632s
to find the speed we substitute t in the equation below:
V=u+at ,but since u=0
V=at =10•0.632=6.32m/s
therefore the speed the body uses to strike the ground is 6.32m/s