The answer is apogee my dude
<span>Extremely powerful single waves have no effect on ships at sea since the depth of water allows the energy to be distributed over hundreds and thousands of feet. In deep water, the bigger the wave, the faster it moves and the slower the surface changes height. As the wave gets into shallow waters, it slows down and can start to pile up to large heights.</span>
Answer:

The rule for kilometers is that every three seconds between a lightning flash and the following thunder gives the distance to the flash in kilometers.
Explanation:
In order to use the rule of thumb to find the speed of sound in meters per second, we need to use some conversion ratios. We know there is 1 mile per every 5 seconds after the lightning is seen. We also know that there are 5280ft in 1 mile and we also know that there are 0.3048m in 1ft. This is enough information to solve this problem. We set our conversion ratios like this:

notice how the ratios were written in such a way that the units got cancelled when calculating them. Notice that in one ratio the miles were on the numerator of the fraction while on the other they were on the denominator, which allows us to cancel them. The same happened with the feet.
The problem asks us to express the answer to one significant figure so the speed of sound rounds to 300m/s.
For the second part of the problem we need to use conversions again. This time we will write our ratios backwards and take into account that there are 1000m to 1 km, so we get:

This means that for every 3.11s there will be a distance of 1km from the place where the lightning stroke. Since this is a rule of thumb, we round to the nearest integer for the calculations to be made easily, so the rule goes like this:
The rule for kilometers is that every three seconds between a lightning flash and the following thunder gives the distance to the flash in kilometers.
The object's speed will not change.
In fact, after the astronaut throws the object, no additional forces will act on it (since the object is in free space). According to Newton's second law:

where the first term is the resultant of the forces acting on the body, m is the mass of the object and a its acceleration, we see that if no forces act on the object, then the acceleration is zero. Therefore, the acceleration of the object is zero, and its velocity remains constant.
To solve this problem we will use the Ampere-Maxwell law, which describes the magnetic fields that result from a transmitter wire or loop in electromagnetic surveys. According to Ampere-Maxwell law:

Where,
B= Magnetic Field
l = length
= Vacuum permeability
= Vacuum permittivity
Since the change in length (dl) by which the magnetic field moves is equivalent to the perimeter of the circumference and that the electric flow is the rate of change of the electric field by the area, we have to

Recall that the speed of light is equivalent to

Then replacing,


Our values are given as




Replacing we have,



Therefore the magnetic field around this circular area is 