1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
nata0808 [166]
3 years ago
12

Steve just completed a woodworking project. now he wants to put a fine finish on his work

Physics
1 answer:
vesna_86 [32]3 years ago
8 0
Pad sander I think I’m not positive tho
You might be interested in
PLEASE HELP ASAP!! CORRECT ANSWER ONLY PLEASE!!
gladu [14]

Here given that x is inversely depends of y

so as we increase the value of y so due to inverse dependency it will decrease the value of x

So here we can also say that when x inversely depends on y

so the product of x and y will remain constant here

so here the graph should be like this that if we increase the quantity on x axis then it will decrease the other quantity on y axis

<u><em>So here best appropriate graph must be option A</em></u>

3 0
3 years ago
Consider two waves defined by the wave functions y1(x,t)=0.50msin(2π3.00mx+2π4.00st) and y2(x,t)=0.50msin(2π6.00mx−2π4.00st). Wh
guapka [62]

Answer:

They two waves has the same amplitude and frequency but different wavelengths.

Explanation: comparing the wave equation above with the general wave equation

y(x,t) = Asin(2Πft + 2Πx/¶)

Let ¶ be the wavelength

A is the amplitude

f is the frequency

t is the time

They two waves has the same amplitude and frequency but different wavelengths.

4 0
3 years ago
How does the sun's energy most directly influence precipitation in an area?
topjm [15]
The sun's energy influences climate in various ways. For example the latitudes at the equator receive more energy from the sun and therefore have warmer temperatures, On the other hand the sun's energy influences precipitation in a climate by driving the water cycle which determines precipitation.The sun is what makes the water cycle take place. That is the sun provides energy or heat to the earth; the heat causes liquid and frozen water to evaporate into water vapor gas, which rises high in the sky to form clouds ( precipitation), that in turn give us rain
5 0
3 years ago
Consider 3.5 kg of austenite containing 0.95 wt% c and cooled to below 727°c (1341°f). (a) what is the proeutectoid phase? (b) h
vladimir2022 [97]
A. The proeutectoid phase is Fe₃c because 0.95 wt/c  is greater than the eutectoid composition which is 0.76 wt/c

b.  We determine how much total territe and cementite form, we apply the lever rule expressions yields.
Wx = (fe₃c-co/cfe₃ c-cx = 6.70- 0.95/6.70- 0.022 = 0.86
The total cementite
Wfe₃C = 10-Cx/ Cfe₃c -Cx = 0.95 - 0.022/6.70 - 0.022 = 0.14
The total cementite which is formed is 
(0.14) × (3.5kg) = 0.49kg

c.  We calculate the pearule and the procutectoid phase which cementite form the equation
Ci = 0.95 wt/c
Wp = 6.70 -ci/6.70 - 0.76 = 6.70 -0.95/6.70 - 0.76 = 0.97
0.97 corresponds to mass.
W fe₃ C¹ = Ci - 0.76/5.94 = 0.03
∴ It is equivalent to 
(0.03) × (3.5) = 0.11kg of total of 3.5kg mass.
4 0
3 years ago
A small rock is thrown straight up with initial speed v0 from the edge of the roof of a building with height H. The rock travels
Crank

Answer:

v_{avg}=\dfrac{3gH+v_0^2}{v_0+\sqrt{v_0^2+2gH} }

Explanation:

The average velocity is total displacement divided by time:

v_{avg} =\dfrac{D_{tot}}{t}

And in the case of vertical v_{avg}

v_{avg}=\dfrac{y_{tot}}{t}

where y_{tot} is the total vertical displacement of the rock.

The vertical displacement of the rock when it is thrown straight up from height H with initial velocity v_0 is given by:

y=H+v_0t-\dfrac{1}{2} gt^2

The time it takes for the rock to reach maximum height is when y'(t)=0, and it is

t=\frac{v_0}{g}

The vertical distance it would have traveled in that time is

y=H+v_0(\dfrac{v_0}{g} )-\dfrac{1}{2} g(\dfrac{v_0}{g} )^2

y_{max}=\dfrac{2gH+v_0^2}{2g}

This is the maximum height the rock reaches, and after it has reached this height the rock the starts moving downwards and eventually reaches the ground. The distance it would have traveled then would be:

y_{down}=\dfrac{2gH+v_0^2}{2g}+H

Therefore, the total displacement throughout the rock's journey is

y_{tot}=y_{max}+y_{down}

y_{tot} =\dfrac{2gH+v_0^2}{2g}+\dfrac{2gH+v_0^2}{2g}+H

\boxed{y_{tot} =\dfrac{2gH+v_0^2}{g}+H}

Now wee need to figure out the time of the journey.

We already know that the rock reaches the maximum height at

t=\dfrac{v_0}{g},

and it should take the rock the same amount of time to return to the roof, and it takes another t_0 to go from the roof of the building to the ground; therefore,

t_{tot}=2\dfrac{v_0}{g}+t_0

where t_0 is the time it takes the rock to go from the roof of the building to the ground, and it is given by

H=v_0t_0+\dfrac{1}{2}gt_0^2

we solve for t_0 using the quadratic formula and take the positive value to get:

t_0=\dfrac{-v_0+\sqrt{v_0^2+2gH}  }{g}

Therefore the total time is

t_{tot}= 2\dfrac{v_0}{g}+\dfrac{-v_0+\sqrt{v_0^2+2gH}  }{g}

\boxed{t_{tot}= \dfrac{v_0+\sqrt{v_0^2+2gH}  }{g}}

Now the average velocity is

v_{avg}=\dfrac{y_{tot}}{t}

v_{avg}=\dfrac{\frac{2gH+v_0^2}{g}+H }{\frac{v_0+\sqrt{v_0^2+2gH} }{g} }

\boxed{v_{avg}=\dfrac{3gH+v_0^2}{v_0+\sqrt{v_0^2+2gH} } }

5 0
3 years ago
Other questions:
  • While hiking in the mountains, tanya observed a narrow and steep valley with a stream at the bottom of it. what most likely caus
    15·2 answers
  • A guy wire helping to stabilize a transmitting tower 500 m high makes in angle of 50° with the ground. In a strong wind, the tow
    7·1 answer
  • A car drives on a circular road of radius R. The distance driven by the car is given by = + [where a and b are constants, and t
    11·1 answer
  • It's urgent can someone please help me!!
    8·1 answer
  • an object moving with a speed of 5 m/s has a kinetic energy of 100 J. what is the mass of the object?
    6·1 answer
  • The amount of electrons that an atom loses, shares or gains is the ________________.
    14·1 answer
  • -2 m
    9·1 answer
  • When three people with a total mass of 2.00 x 102 kg step into their 1.200 x 103 kg car, the car’s
    12·1 answer
  • I need help, Will mark branliest!
    5·2 answers
  • What is the difference between real and apparent weightlessness?
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!