Answer:
25.2563 m/s
Explanation
This is the equation needed

So Just plug in!
Answer:
'Incident rays that are parallel to the central axis are sent through a point on the near side of the mirror'.
Explanation:
The question is incomplete, find the complete question in the comment section.
Concave mirrors is an example of a curved mirror. The outer surface of a concave mirror is always coated. On the concave mirror, we have what is called the central axis or principal axis which is a line cutting through the center of the mirror. The points located on this axis are the Pole, the principal focus and the centre of curvature. <em>The focus point is close to the curved mirror than the centre of curvature.</em>
<em></em>
During the formation of images, one of the incident rays (rays striking the plane surface) coming from the object and parallel to the principal axis, converges at the focus point after reflection because all incident rays striking the surface are meant to reflect out. <em>All incident light striking the surface all converges at a point on the central axis known as the focus.</em>
Based on the explanation above, it can be concluded that 'Incident rays that are parallel to the central axis are sent through a point on the near side of the mirror'.
They make sure the bridge is functional and safe before the add the
<span>aesthetics</span>
Answer:
a) The velocity of the car is 7.02 m/s and the car is approaching to the police car as the frequency of the police car is increasing.
b) The frequency is 1404.08 Hz
Explanation:
If the police car is a stationary source, the frequency is:
(eq. 1)
fs = frequency of police car = 1200 Hz
fa = frequency of moving car as listener
v = speed of sound of air
vc = speed of moving car
If the police car is a stationary observer, the frequency is:
(eq. 2)
Now,
fL = frequecy police car receives
fs = frequency police car as observer
a) The velocity of car is from eq. 2:

b) Substitute eq. 1 in eq. 2:
