Answer:
(a): It spends on the trip 2.75 hr (2 hours 45 minutes)
(b): The person travels 213.9 km.
Explanation:
Vp= 77.8 km/h
V1= 89.5 km/h
V2= 0 km/h
t2= 0.36hr
t1= ?
Vp= (V1*t1 + V2*t2) / (t1 + t2)
clearing t1:
t1= 2.39 hr
Trip time= t1+t2
Trip time= 2.75 hr (a)
Distance traveled= V1*t1
Distace traveled= 213.9 km (b)
Answer:
Force required to accelerate = 794.44 N
Explanation:
Force required = Mass of horse x Acceleration of horse
Mass of horse and rider, m= 572 kg
Acceleration of horse and rider, a = 5 kph per second

Force required = ma
= 572 x 1.39 = 794.44 N
Force required to accelerate = 794.44 N
Answer:

Given:
Initial velocity (u) = 30 m/s
Final speed (v) = 0 m/s
Acceleration (a) = - 1.5 m/,s²
To Find:
Time in which train will come to rest (t).
Explanation:

So,
Time in which train will come to rest = 20 seconds
Answer:
energy can exist in many different forms
Explanation:
Answer:
W = 3.12 J
Explanation:
Given the volume is 1.50*10^-3 m^3 and the coefficient of volume for aluminum is β = 69*10^-6 (°C)^-1. The temperature rises from 22°C to 320°C. The difference in temperature is 320 - 22 = 298°C, so ΔT = 298°C. To reiterate our known values we have:
β = 69*10^-6 (°C)^-1 V = 1.50*10^-3 m^3 ΔT = 298°C
So we can plug into the thermal expansion equation to find ΔV which is how much the volume expanded (I'll use d instead of Δ because of format):

So ΔV = 3.0843*10^-5 m^3
Now we have ΔV, next we have to solve for the work done by thermal expansion. The air pressure is 1.01 * 10^5 Pa
To get work, multiply the air pressure and the volume change.

W = 3.12 J
Hope this helps!