1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
andriy [413]
3 years ago
10

A body oscillates with simple harmonic motion along the x-axis. Its displacement varies with time according to the equation x =

0.5 sin (pt+p/3). The acceleration (in m/s2) of the body at t = 1.0 s is approximately
a. 3.5
b. 49
c. 14
d. 43
e. 4.3
Physics
1 answer:
abruzzese [7]3 years ago
6 0
I'll tell you how I look at this, although I may be missing something important.

Position = x(t) = 0.5 sin(pt + p/3)

Speed = position' = x'(t) = 0.5 p cos(pt + p/3)

Acceleration = speed' = position ' ' = x ' '(t) = -0.5 p² sin(pt + p/3)

At (t = 1.0),

x ' '(t) = -0.5 p² sin( 4/3 p )

In order to evaluate this, don't I still have to know what 'p' is ? ?

I don't think it can be evaluated with the information given in the question.
You might be interested in
A drawback of burning biomass to produce electricity is that it is ___.
attashe74 [19]

Answer: Unsustainable wood harvesting can lead to deforestation, soil erosion, and desertification.

Explanation: you welcome

4 0
3 years ago
Two Earth satellites, A and B, each of mass m, are to be launched into circular orbits about Earth's center. Satellite A is to o
Pachacha [2.7K]

(a) 0.448

The gravitational potential energy of a satellite in orbit is given by:

U=-\frac{GMm}{r}

where

G is the gravitational constant

M is the Earth's mass

m is the satellite's mass

r is the distance of the satellite from the Earth's centre, which is sum of the Earth's radius (R) and the altitude of the satellite (h):

r = R + h

We can therefore write the ratio between the potentially energy of satellite B to that of satellite A as

\frac{U_B}{U_A}=\frac{-\frac{GMm}{R+h_B}}{-\frac{GMm}{R+h_A}}=\frac{R+h_A}{R+h_B}

and so, substituting:

R=6370 km\\h_A = 5970 km\\h_B = 21200 km

We find

\frac{U_B}{U_A}=\frac{6370 km+5970 km}{6370 km+21200 km}=0.448

(b) 0.448

The kinetic energy of a satellite in orbit around the Earth is given by

K=\frac{1}{2}\frac{GMm}{r}

So, the ratio between the two kinetic energies is

\frac{K_B}{K_A}=\frac{\frac{1}{2}\frac{GMm}{R+h_B}}{\frac{1}{2}\frac{GMm}{R+h_A}}=\frac{R+h_A}{R+h_B}

Which is exactly identical to the ratio of the potential energies. Therefore, this ratio is also equal to 0.448.

(c) B

The total energy of a satellite is given by the sum of the potential energy and the kinetic energy:

E=U+K=-\frac{GMm}{R+h}+\frac{1}{2}\frac{GMm}{R+h}=-\frac{1}{2}\frac{GMm}{R+h}

For satellite A, we have

E_A=-\frac{1}{2}\frac{GMm}{R+h_A}=-\frac{1}{2}\frac{(6.67\cdot 10^{-11})(5.98\cdot 10^{24}kg)(28.8 kg)}{6.37\cdot 10^6 m+5.97\cdot 10^6 m}=-4.65\cdot 10^8 J

For satellite B, we have

E_B=-\frac{1}{2}\frac{GMm}{R+h_B}=-\frac{1}{2}\frac{(6.67\cdot 10^{-11})(5.98\cdot 10^{24}kg)(28.8 kg)}{6.37\cdot 10^6 m+21.2\cdot 10^6 m}=-2.08\cdot 10^8 J

So, satellite B has the greater total energy (since the energy is negative).

(d) -2.57\cdot 10^8 J

The difference between the energy of the two satellites is:

E_B-E_A=-2.08\cdot 10^8 J-(-4.65\cdot 10^8 J)=-2.57\cdot 10^8 J

4 0
3 years ago
38.4 mol of krypton is in a rigid box of volume 64 cm^3 and is initially at temperature 512.88°C. The gas then undergoes isobari
kolbaska11 [484]

Answer:

Final volumen first process V_{2} = 98,44 cm^{3}

Final Pressure second process P_{3} = 1,317 * 10^{10} Pa

Explanation:

Using the Ideal Gases Law yoy have for pressure:

P_{1} = \frac{n_{1} R T_{1} }{V_{1} }

where:

P is the pressure, in Pa

n is the nuber of moles of gas

R is the universal gas constant: 8,314 J/mol K

T is the temperature in Kelvin

V is the volumen in cubic meters

Given that the amount of material is constant in the process:

n_{1} = n_{2} = n

In an isobaric process the pressure is constant so:

P_{1} = P_{2}

\frac{n R T_{1} }{V_{1} } = \frac{n R T_{2} }{V_{2} }

\frac{T_{1} }{V_{1} } = \frac{T_{2} }{V_{2} }

V_{2} = \frac{T_{2} V_{1} }{T_{1} }

Replacing : T_{1} =786 K, T_{2} =1209 K, V_{1} = 64 cm^{3}

V_{2} = 98,44 cm^{3}

Replacing on the ideal gases formula the pressure at this piont is:

P_{2} = 3,92 * 10^{9} Pa

For Temperature the ideal gases formula is:

T = \frac{P V }{n R }

For the second process you have that T_{2} = T_{3}  So:

\frac{P_{2} V_{2} }{n R } = \frac{P_{3} V_{3} }{n R }

P_{2} V_{2}  = P_{3} V_{3}

P_{3} = \frac{P_{2} V_{2}}{V_{3}}

P_{3} = 1,317 * 10^{10} Pa

7 0
3 years ago
Two forces, one of 100 ponds and the other 150 pounds act on the same object, at angles of 20°and 60°, respectively, withthe pos
soldi70 [24.7K]
<h2>Resultant is 235.54 pounds at an angle 44.16° to X axis.</h2>

Explanation:

Forces are 100 pound and 150 pound and angles with x axis are 20°and 60°.

That is force 1 is 100 pound with x axis at 20°

           F₁ = 100 cos 20 i  +  100 sin 20 j

           F₁ = 93.97 i  +  34.20 j          

That is force 2 is 150 pound with x axis at 60°

           F₂ = 150 cos 60 i  +  150 sin 60 j

           F₂ = 75 i  +  129.90 j  

F₁ +  F₂ =  93.97 i  +  34.20 j + 75 i  +  129.90 j

F₁ +  F₂ =  168.97 i  +  164.10 j

\texttt{Magnitude = }\sqrt{168.97^2+164.10^2}\\\\\texttt{Magnitude = }235.54pounds\\\\\texttt{Angle = }tan^{-1}\left ( \frac{164.10}{168.97}\right )\\\\\texttt{Angle = }44.16^0

Resultant is 235.54 pounds at an angle 44.16° to X axis.

6 0
3 years ago
A moving van travels 10km North, then 4 km east, drops off some furniture and then drives 8 km south. (a) Sketch the path of the
Juli2301 [7.4K]

Answer:

4.47 km

Explanation:

If we draw the path of the van then we get a shape with two exposed points A and D. If we draw a line from point D perpendicular to BA we get point E. This gives us a right angled triangle ADE.

From Pythagoras theorem

AD² = AE² + ED²

AD=\sqrt{AE^2+ED^2}\\\Rightarrow AD=\sqrt{2^2+4^2}\\\Rightarrow AD=\sqrt{20}\\\Rightarrow AD=4.47\ km

Hence, the van is 4.47 km from its initial point

3 0
3 years ago
Other questions:
  • What is the biggest barrier to the use of renewable energy in the United States?
    5·2 answers
  • Rubbing your hands together warms them by converting work into thermal energy. If a woman rubs her hands back and forth for a to
    15·1 answer
  • IS THERE A PLASTIC THAT YOU CAN SEE AND BREATHE THROUGH??? SOMEONE PLEASE ANSWER THIS!!!
    14·1 answer
  • A uniform string of length 10.0 m and weight 0.32 N is attached to the ceiling. A weight of 1.00 kN hangs from its lower end. Th
    12·1 answer
  • An aluminum rod 17.400 cm long at 20°C is heated to 100°C. What is its new length? Aluminum has a linear expansion coefficient o
    7·1 answer
  • If a laser beam is shot straight up from the bottom of a pool so that it intersects the pools surface in a perpendicular fashion
    5·1 answer
  • A battery with an emf of 4 V and an internal resistance of 0.7 capital omega is connected to a variable resistance R. Find the c
    15·1 answer
  • What instrument will we use to find liquid volume
    5·1 answer
  • What is the momentum of an airplane with a mass of 360,000 kg moving<br> down the runway at 1.5 m/s?
    13·1 answer
  • Two examples of chemical reactions that involved a thermal energy change:
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!