Answer:
6 meters away
Explanation:
6*1.4= 8.4 which is pretty close
Answer;
=15855.40 kg/m^3
Explanation;
Volume (V) of the cylinder = pi x r^2 x h
V = 3.14 x (44/2 x 10^-3)^2 x 41.5 x 10^-3
V = 6.307 x 10^-5 m^3
By density = m/V
mass = 1 kg
density = 1/(6.307 x 10^-5) = 15855.40 kg/m^3
The distance is 30 km and the displacement is 22.4 km North East
The magnitude of the induced emf is given by:
ℰ = |Δφ/Δt|
ℰ = emf, Δφ = change in magnetic flux, Δt = elapsed time
The magnetic field is perpendicular to the loop, so the magnetic flux φ is given by:
φ = BA
B = magnetic field strength, A = loop area
The area of the loop A is given by:
A = πr²
r = loop radius
Make a substitution:
φ = B2πr²
Since the strength of the magnetic field is changing while the radius of the loop isn't changing, the change in magnetic flux Δφ is given by:
Δφ = ΔB2πr²
ΔB = change in magnetic field strength
Make another substitution:
ℰ = |ΔB2πr²/Δt|
Given values:
ΔB = 0.20T - 0.40T = -0.20T, r = 0.50m, Δt = 2.5s
Plug in and solve for ℰ:
ℰ = |(-0.20)(2π)(0.50)²/2.5|
ℰ = 0.13V
100 meters divided by a speed of 12.5 meters a second equals 8 seconds.