Part A: Is 32
Part B: Is 32.4%
Part C: is “He is correct because the conditional probabilities of liking soccer are the same (when rounded to the nearest whole number).
Answer:
7,001,048
Step-by-step explanation:
Answer:
$36
Step-by-step explanation:
8a+5c
8(2)+5(4)
16 + 20
36
Answer:
x = 23
y = 7
z = 11
Step-by-step explanation:
Since ∆PRS ≅ ∆CFH, therefore,
m<R = m<F
13y - 1 = 90° (substitution)
Add 1 to both sides
13y - 1 + 1 = 90 + 1
13y = 91
Divide both sides by 13
13y/13 = 91/13
y = 7
Since ∆PRS ≅ ∆CFH, therefore,
PS = CH
2x - 7 = 39 (substitution)
Add 7 to both sides
2x - 7 + 7 = 39 + 7
2x = 46
Divide both sides by 2
2x/2 = 46/2
x = 23
Since ∆PRS ≅ ∆CFH, therefore,
m<S = m<H
Find m<S
m<S = 180 - (m<P + m<R) (sum of ∆)
m<S = 180 - (28 + (13y - 1)) (substitution)
Plug in the value of y
m<S = 180 - (28 + (13)(7) - 1))
m<S = 180 - (28 + 91 - 1)
m<S = 180 - 118
m<S = 62°
Therefore, since m<S = m<H,
62° = 6z - 4 (substitution)
Add 4 to both sides
62 + 4 = 6z - 4 + 4
66 = 6z
Divide both sides by 6
66/6 = 6z/6
11 = z
<h3><u>Answer </u><u>1</u><u> </u><u>:</u><u>-</u></h3>
If I were one of the students in Barangay then I shall prepare the design of kite by using the known properties of kites in mathematics.
For example, Symmetrical about its main diagonals, Adjacent side equals, Having two pairs of congruent triangle etc.
<h3><u>Answer </u><u>2</u><u> </u><u>:</u><u>-</u><u> </u></h3>
Design of kite assign to me
<u>Step </u><u>1</u><u> </u><u>:</u><u>-</u>
- I shall take one paper and cut it like that the adjacent sides of paper are equal
<u>Reason </u><u>:</u><u>-</u>
- <u>Adjacent </u><u>sides </u><u>of </u><u>kite </u><u>are </u><u>equal </u>
<u>Step </u><u>2</u><u> </u><u>:</u><u>-</u>
- I shall take two thin sticks and paste it on the paper but sticks should intersect each other at 90°
<u>Reason</u><u> </u><u>:</u><u>-</u>
- <u>Kite</u><u> </u><u>has </u><u>2</u><u> </u><u>diagonals </u><u>which </u><u>intersect </u><u>each </u><u>other </u><u>at </u><u>9</u><u>0</u><u>°</u><u> </u><u>.</u>
<u>Step </u><u>3</u><u> </u><u>:</u><u>-</u>
- <u>Make </u><u>a </u><u>hole </u><u>in </u><u>the </u><u>one </u><u>of </u><u>the </u><u>end </u><u>point </u><u>of </u><u>a </u><u>longest </u><u>sides</u><u>. </u>
<u>Observation </u><u>:</u><u>-</u>
- <u>The </u><u>kite </u><u>should </u><u>be </u><u>looked </u><u>like </u><u>that </u><u>it </u><u>having </u><u>two </u><u>pairs </u><u>of </u><u>congruent </u><u>triangle</u><u> </u><u>with </u><u>common </u><u>base. </u>
<h3><u>Answer </u><u>3</u><u> </u><u>:</u><u>-</u></h3>
- The adjacent sides of the kites are equal that is 4cm and 6cm
- The diagonals of the kite bisect each other at 90°
- As kite is symmetrical from main diagonals , so it has two opposite and equal Angles that is 127°
- The opposite angles at the end points of kite are congruent that is Angle D and Angle C
- AC is the bisector of AB and AB is the bisector of AC .
[ Note :- Kindly refer the above attachment ]
<h3><u>Answer </u><u>4</u><u> </u><u>:</u><u>-</u></h3>
All mathematical concepts used in making kite are as follows :-
- <u>Adjacent </u><u>sides </u><u>are </u><u>equal </u>
- <u>Diagonal </u><u>intersect </u><u>each </u><u>other </u><u>at </u><u>9</u><u>0</u><u>°</u>
- <u>Having </u><u>two </u><u>pairs </u><u>of </u><u>congruent </u><u>triangle </u><u>with </u><u>common </u><u>base </u>
- <u>Symmetrical </u><u>about</u><u> </u><u>its </u><u>main </u><u>diagonal</u>
- <u>Opposite </u><u>angles </u><u>at </u><u>the </u><u>end </u><u>points </u><u>are </u><u>equal</u>