It is called an equinox. This days happen because the plane of the Earth's equator passes through the center of the Sun, in result, the light coming from it hits both hemispheres equally. Hopefully my answer has come to your help.
Option C
In nuclear fission and fusion the mass defect is the mass lost during the reaction that is converted into energy
<u>Explanation:</u>
Mass defect is the contrast within the estimated mass of the released system and the empirically estimated mass of the nucleus. The nuclear binding energy is acknowledged as mass, and that mass enhances "missing".
This missing mass is described as a mass defect, which is nuclear energy, also acknowledged as the mass discharged from the reaction as any trajectories. The mass defect of a nucleus depicts the mass of the energy adhesive of the nucleus and is the variation amidst the mass of a nucleus and the entirety of the masses of the nucleons of which it is comprised.
Answer:
The distance from the top of the stick would be 2l/3
Explanation:
Let the impulse 'FΔt' acts as a distance 'x' from the hinge 'H'. Assume no impulsive reaction is generated at 'H'. Let the angular velocity of the rod about 'H' just after the applied impulse be 'W'. Also consider that the center of percussion is the point on a bean attached to a pivot where a perpendicular impact will produce no reactive shock at the pivot.
Applying impulse momentum theorem for linear momentum.
FΔt = m(Wl/2), since velocity of center of mass of rod = Wl/2
Similarly applying impulse momentum theorem per angular momentum about H
FΔt * x = I * W
Where FΔt * x represents the impulsive torque and I is the moment of inertia
F Δt.x = (ml² . W)/3
Substituting FΔt
M(Wl/2) * x = (ml². W)/3
1/x = 3/2l
x = 2l/3