There's no reason why the center of gravity must be in a place where
there is a any mass.
The center of gravity is simply a LOCATION ... the place where the
amount of mass in any direction from it is the same amount.
For that matter, whenever you know the location of the center of gravity
for ANY object, you can always go in there and scoop our a tiny spherical
hole at that place. Then the center of gravity won't move, but it will be in an
empty space, 'outside the body' of the object.
Here are a few more points to ponder:
-- The center of gravity of a basketball, beach ball, tennis ball, or any other
inflated ball is the center of the ball, where there is no part of the skin.
-- The center of gravity of a party balloon is somewhere inside the balloon,
where there is no rubber. If the balloon is spherical, then its center of gravity
is the center of the sphere.
-- The center of gravity of a square is the center of the square, not on any
of its sides.
-- The center of gravity of a triangle is the centroid of the triangle, not on any
of its sides.
Temperature will rise until reaching 0°C.
Most likely, the light wave will be absorbed by the wall. Without any information as to the size and color of the wall, the location and size of the hole, or the location of the light wave, this is a generalized probability problem. For all of the places the light could be, it's more likely that it hits the wall than the hole (if the hole is less than 50% of the area of the wall).
1) At the moment of being at the top, the piston will not only tend to push the penny up but will also descend at a faster rate at which the penny can reach in 'free fall', in that short distance. Therefore, at the highest point, the penny will lose contact with the piston. Therefore the correct answer is C.
2) To solve this problem we will apply the equations related to the simple harmonic movement, hence we have that the acceleration can be defined as

Where,
a = Acceleration
A = Amplitude
= Angular velocity
From a reference system in which the downward acceleration is negative due to the force of gravity we will have to



From the definition of frequency and angular velocity we have to




Therefore the maximum frequency for which the penny just barely remains in place for the full cycle is 2.5Hz
Answer:
Lol, you should do Nate, Bobby, Cindy, Joe, and Beth
Jk, if you want to be series and probably not fail go for these:
If it wants types of small/average stars, then go with
Small star names:
OGLE-TR-122B
Gliese 229 B
TRAPPIST-1
Teegarden's Star
Luyten 726-8 (A and B)
Proxima Centauri
Wolf 359 111400
Ross 248
Barnard's Star
CM Draconis B
Ross 154 167000
CM Draconis A
Kapteyn's Star