Imagine you are in a swimming pool 30m deep. Assuming you know that water is denser than air, you would know that the 30m of water above you will carry more weight, and press down on your body. Say you were in a swimming pool 60m deep, you would be sandwiched between 30m of water pressing down on you, and the upthrust created by the 30m of water below you.
In a building 30m up, the pressure will be regulated, as you are in a building. The floor will be strong enough to support the weight of the body, and the body will not recoil into itself.
The quantity of heat must be removed is 1600 cal or 1,6 kcal.
<h3>Explanation : </h3>
From the question we will know if the condition of ice is at the latent point. So, the heat level not affect the temperature, but it can change the object existence. So, for the formula we can use.
If :
- Q = heat of latent (cal or J )
- m = mass of the thing (g or kg)
- L = latent coefficient (cal/g or J/kg)
<h3>Steps : </h3>
If :
- m = mass of water = 20 g => its easier if we use kal/g°C
- L = latent coefficient = 80 cal/g
Q = ... ?
Answer :
So, the quantity of heat must be removed is 1600 cal or 1,6 kcal.
<u>Subject : Physics </u>
<u>Subject : Physics Keyword : Heat of latent</u>
Answer:
d.) provides proteins for plants
Explanation:
Dalton's atomic<span> theory proposed that all matter was composed of </span>atoms<span>, indivisible and indestructible building blocks. While all </span>atoms<span> of an element were identical, different elements had </span>atoms<span> of differing size and mass</span>
Answer:
20 N
Explanation:
In air, the normal force is equal to the weight.
∑F = ma
N − mg = 0
N = mg
Submerged in water, the normal force is equal to the weight minus the buoyant force:
∑F = ma
B + N − mg = 0
N = mg − B
Plugging in values:
80 N = 100 N − B
B = 20 N