Answer:
The correct answer is "Electrons are transferred in an ionic bond"
Explanation:
The covalent bond is the chemical bond between atoms where electrons are shared, forming a molecule. Covalent bonds are established between non-metallic elements, such as hydrogen H, oxygen O and chlorine Cl. These elements have many electrons in their outermost level (valence electrons) and have a tendency to gain electrons to acquire the stability of the electronic structure of noble gas. The shared electron pair is common to the two atoms and holds them together.
An ionic bond is produced between metallic and non-metallic atoms, where electrons are completely transferred from one atom to another. During this process, one atom loses electrons and another one gains them, forming ions. Usually, the metal gives up its electrons forming a cation to the nonmetal element, which forms an anion.
In conclusion, chemical bonds are made so that atoms can have their entire outer layer, and thus have a stable electronic configuration. In the ionic bond, when the metallic atom has only one electron in its outer layer and the non-metallic one needs an electron to complete its layer; The metallic atom seats its electron to the non-metallic one. In the same way, the electron is shared in the covalent bond in order to achieve equilibrium.
Then, the main differences between the two bonds are that the ionic bond occurs between two different atoms (metallic and non-metallic), while the covalent bond occurs between two equal atoms (non-metallic). And in the covalent bond there is an electron compartment, while in the ionic bond there is an electron transfer.
So, the correct answer is "Electrons are transferred in an ionic bond"
Answer,
For example, silver ion can be precipitated with hydrochloric acid to yield solid silver chloride. Because many cations will not react with hydrochloric acid in this way, this simple reaction can be used to separate ions that form insoluble chlorides from those that do not.
156. Atomic mass if the number of protons and neutrons within an atom.
Answer:
1. Hydrogen Iodide
2. 6 molecules of Hydrogen Iodide
3. Iodine is the limiting reagent
Explanation:
The image of the illustration in the question has been attached:
1. The illustration represents a mixture of hydrogen ( light blue ) and iodine ( purple )
H₂ + I₂ ---> 2HI
This forms hydrogen iodide.
2. In the given illustration, 6 product molecules of Hydrogen Iodide. This is indicated in the box on the right side of the illustration.
3. The limiting reagent is the reactant that determines how much of the products are made. It is the substance that is totally consumed when the chemical reaction is completed. In the box on the right side of the illustration, you will see that hydrogen which is indicated by blue is in excess. The limiting reagent is the one that is completely consumed which is the iodine.