Answer:
First, let's determine how many moles of oxygen we have.
Atomic weight oxygen = 15.999
Molar mass O2 = 2*15.999 = 31.998 g/mol
We have 3 drops at 0.050 ml each for a total volume of 3*0.050ml = 0.150 ml
Since the density is 1.149 g/mol,
we have 1.149 g/ml * 0.150 ml = 0.17235 g of O2
Divide the number of grams by the molar mass to get the number of moles 0.17235 g / 31.998 g/mol = 0.005386274 mol
Now we can use the ideal gas law. The equation PV = nRT where P = pressure (1.0 atm) V = volume n = number of moles (0.005386274 mol) R = ideal gas constant (0.082057338 L*atm/(K*mol) ) T = Absolute temperature ( 30 + 273.15 = 303.15 K)
Now take the formula and solve for V, then substitute the known values and solve.
PV = nRT V = nRT/P V = 0.005386274 mol * 0.082057338 L*atm/(K*mol) * 303.15 K / 1.0 atm V = 0.000441983 L*atm/(K*) * 303.15 K / 1.0 atm V = 0.133987239 L*atm / 1.0 atm V = 0.133987239 L
So the volume (rounded to 3 significant figures) will be 134 ml.
Answer:
For better digestive health, follow these simple tips:
Eat a high-fiber diet. ...
Be sure you're getting both soluble and insoluble fiber. ...
Minimize your intake of foods high in fat. ...
Select lean meats. ...
Add probiotics to your diet. ...
Follow a regular eating schedule. ...
Drink plenty of water.
Explanation:
Molarity = moles of solute/volume of solution in liters.
The solute here is NaCl, of which we have 46.5 g. To calculate the molarity of an NaCl solution, we need to know the number of moles of NaCl. To convert from grams to moles, we divide the mass by the molar mass of NaCl. The molar mass of NaCl is the sum of the atomic masses of Na and Cl: 23 amu + 35 amu = 58 amu. For our purposes, we can regard amu as equivalent to grams/mole.
(46.5 g)/(58 g/mol) = 0.8017 moles NaCl.
Now that we know both the number of moles of our NaCl solute and the volume of the solution, we can calculate the molarity:
(0.8017 moles NaCl)/(2.2 L) = 0.364 M.
Answer:
Total pressure 5.875 atm
Explanation:
The equation for above decomposition is

rate constant 
Half life 
Initial pressure 
Pressure after 3572 min = P
According to first order kinematics


solving for P we get
P = 2.35 atm

initial 4.70 0 0
change -2x +2x +x
final 4.70 -2x 2x x
pressure of
after first half life = 2.35 = 4.70 - 2x
x = 1.175
pressure of
after first half life = 2x = 2(1.175) = 2.35 ATM
Total pressure = 2.35 + 2.35 + 1.175
= 5.875 atm